
	

ICS	111	
Introduction	to	
Computer	Science	I	

	
	
	

ICS	111	-	Introduction	to	Computer	Science	I	
	

	

Instructor	Information	
	

David	Maxson	
David.Maxson@hawaii.edu		
Office	hours:	Online	

Windward	Community	College	Mission	Statement	
Windward	Community	College	offers	innovative	programs	in	the	arts	and	sciences	and	opportunities	to	gain	
knowledge	and	understanding	of	Hawai‘i	and	its	unique	heritage.	With	a	special	commitment	to	support	the	
access	and	educational	needs	of	Native	Hawaiians,	we	provide	O‘ahu’s	Ko‘olau	region	and	beyond	with	liberal	
arts,	career	and	lifelong	learning	in	a	supportive	and	challenging	environment	—	inspiring	students	to	excellence.	

	

Catalog	Description	
Intended	for	Computer	Science	majors	and	all	others	interested	in	a	first	course	in	programming.		An	overview	of	
the	fundamentals	of	computer	science	emphasizing	problem	solving,	algorithm	development,	implementation,	
and	debugging/testing	using	an	object-oriented	programming	language.	
	

Student	Learning	Outcomes	
	

The	Student	Learning	Outcomes	for	this	course	are:	
• Use	an	appropriate	programming	environment	to	design,	code,	compile,	run	and	debug	computer	

programs.	
• Demonstrate	basic	problem	solving	skills:	analyzing	problems,	modeling	a	problem	as	a	system	of	objects,	

creating	algorithms,	and	implementing	models	and	algorithms	in	an	object-oriented	computer	language	
(classes,	objects,	methods	with	parameters,	abstract	classes,	interfaces,	inheritance	and	polymorphism).	

• Illustrate	basic	programming	concepts	such	as	program	flow	and	syntax	of	a	high-level	general	purpose	
language.	

• Demonstrate	working	with	primitive	data	types,	strings	and	arrays.	 	

Student	Learning	Outcomes	Alignment	

Student	Learning	Outcome	
	

Lessons	and	Assessments	

Use	an	appropriate	programming	environment	to	design,	code,	
compile,	run,	and	debug	computer	programs.	
	

Lessons	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	
14	
Assignments	2,	3,	4,	5,	6,	7,	8,	9,	10,	
11,	12,	13,	14,	15	

Demonstrate	basic	problem	solving	skills:	analyzing	problems,	
modeling	a	problem	as	a	system	of	objects,	creating	algorithms,	and	
implementing	models	and	algorithms	in	an	object-oriented	
computer	language	

	

Lessons	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	
14	
Assignments	2,	3,	4,	5,	6,	7,	8,	9,	10,	
11,	12,	13,	14,	15	

Illustrate	basic	programming	concepts	such	as	program	flow	and	
syntax	of	a	high-level	general	purpose	language.	

	

Lessons	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	
14	
Assignments	2,	3,	4,	5,	6,	7,	8,	9,	10,	
11,	12,	13,	14,	15	

Demonstrate	working	with	primitive	data	types,	strings,	and	arrays.	

	

Lessons	3,	4,	5,	6,	7,	8	,	9,	10,	11,	12,	
13,	14	
Assignments	2,	3,	4,	5,	6,	7,	8,	9,	10,	
11,	12,	13,	14,	15	

	
	
Course	Content	

Concepts	 Skills	
1. Use	an	appropriate	programming	environment	to	

design,	code,	compile,	run	and	debug	computer	
programs.	
a. Programming-tools.	

1) Integrated	Development	
Environment	(IDE)	or	a	text	editor	
and	command	line-based	
compilation	and	execution.	

b. Coding	a	solution.	
1) Self-documenting	programs.	
2) Good	formatting.	

c. Compile	and	run	programs.	
a. Debug	programs.	
	

	

1. Use	an	appropriate	programming	environment	to	
design,	code,	compile,	run	and	debug	computer	
programs.	
a. Use	programming	tools	to	model	a	problem	and	

design	algorithms	that	express	its	solution.	
b. Formulate	models	and	algorithms	in	the	syntax	

of	an	object-oriented	programming	language	
using	either	an	Integrated	Development	
Environment	(IDE)	or	a	text	editor.	

c. Utilize	either	an	IDE	or	a	command	prompt	to	
compile	and	run	programs.	

d. Test	and	debug	programs	to	produce	code	that	
runs	and	generates	the	correct	results.	

	

2. Demonstrate	basic	problem	solving	skills:	
analyzing	problems,	modeling	a	problem	as	a	
system	of	objects,	creating	algorithms,	and	
implementing	models	and	algorithms	in	an	object-

2. Demonstrate	basic	problem	solving	skills:	analyzing	
problems,	modeling	a	problem	as	a	system	of	
objects,	creating	algorithms,	and	implementing	
models	and	algorithms	in	an	object-oriented	

oriented	computer	language	(classes,	objects,	
methods	with	parameters,	abstract	classes,	
interfaces,	inheritance	and	polymorphism).	
a. Analysis	of	a	problem	by	identifying	objects	

and	classifying	them.	
b. Design	a	solution	to	the	problem	by	defining	

the	messages	objects	send	each	other,	the	
parameters	the	messages	carry	and	the	
inheritance	among	object	classes.	

c. Classes,	objects,	and	methods.	
1)	Classes	objects,	and	methods	described.	

a)	Classes.	
b)	Objects.	
c)	Method	declarations	and	method	calls	
d)	Overloaded	methods.	

2)	Incorporate	parameter	passing.	
a)	Formal	and	actual	parameters.	
b)	Returning	values	from	methods	
c)	Parameter	passing	by	value	and	by	

reference.	
3)	Write	simple	classes	and	objects.	

a)	Classes.	
b)	Objects.	
c)	Method	declaration/implementation	

and	method	calls.	
d)	Constructors.	
e)	Encapsulation	through	visibility	

modifiers	(public,	private)	
f)	Class	and	instance	methods	and	fields	

(static)	
4)	Inheritance	and	Polymorphism	

a)	Extending	classes,	subclasses	
b)	Overriding	methods	
c)	Polymorphism	

5)	Interfaces	
a)	Interfaces	as	types	
b)	Implementing	by	classes		

	 	 6)		Program	Development	
a)	Algorithm	design	and	representation	
using	pseudocode,	flowcharts,	etc.	

b)	Evaluate	algorithm	efficiency.	
c)	Stepwise	refinement.	
d)	Program	lifecycle.	

	

computer	language	(classes,	objects,	methods	with	
parameters,	abstract	classes,	interfaces,	inheritance	
and	polymorphism).	
a. Classes,	objects,	and	methods	

1) Use	API	classes,	objects,	and	
methods,	citing	examples.	

2) Write	simple	classes	and	create	
objects	that	interact	between	
multiple	classes.	

3) Understand	parameter	passing	and	
methods	returning	values	

4) Inheritance	and	Polymorphism		
a) Model	a	problem	as	a	hierarchy	

of	classes		
b) Differentiate	between	

overloading	and	overriding.	
5) Define	Interfaces	and	implement	

them	with	classes		
b. Apply	problem-solving	techniques	such	as	

stepwise	refinement	and	object-oriented	
analysis	

c. Incorporate	the	concept	of	software	life	cycle	into	
program	development.	

d. Determine	and	design	an	algorithm	to	solve	a	
specific	problem.		

e. Evaluate	algorithm	performance.	
	

	

3.	 Illustrate	basic	programming	concepts	such	as	
program	flow	and	syntax	of	a	high-level	general	
purpose	language.	
a. Sequence.	

3. Illustrate	basic	programming	concepts	such	as	
program	flow	and	syntax	of	a	high-level	general	
purpose	language.	
a. Describe	sequential,	branching,	and	repetitive	

b. Selection.	
c. Repetition.	

	

concepts.	
b. Use	flowcharting	to	capture	sequential,	

branching,	and	repetitive	concepts.	
Incorporate	good	programming	practices	

4. Identify	relationships	between	computer	systems,	
programming	and	programming	languages.	
a. Computer	organization	and	architecture	

(memory,	arithmetic-logic	unit,	control	unit).	
b. Binary	representation	of	data	(range	of	data	

type,	precision	and	round-off,	image	
representation).	

c. Operating	system	concepts.	
d. Programming	language	assembler/compiler.	

	

4. Identify	relationships	between	computer	systems,	
programming	and	programming	languages.	
a. Examine	the	hardware	(binary	numbers,	

character	encoding,	Boolean	logic)	and	basic	
computer	system	architecture	concepts.	

b. Examine	system	software	and	virtual	machine	
concepts.	

c. Describe	the	concept	of	program	compilation	
and	translation	to	machine	code.	

	
5. Demonstrate	working	with	primitive	data	types,	

strings	and	arrays.	
a. Primitives	Types	

1. Numeric,	character	and	boolean	types.	
2. Numeric	accuracy.	
3. Memory	requirements.	
4. Declaration.	
5. Initialization.	

b. Integer	Arithmetic	
1. Addition	and	subtraction,	increment	and	

decrement		
2. Multiplication,	division,	and	modulo.	
3. Truncation.	

c. Casting	
1. Type	assignment.	
2. Implicit	and	explicit	casting.	
d. Strings	
1. Constants	
2. Concatenation.	

e. Arrays	
1. Declaration	
2. Access	to	array	vs.	access	to	an	element	
3. Multidimensional	arrays	

5. Demonstrate	working	with	primitive	data	types,	
strings	and	arrays.	
a. Primitive	types	

1) Utilize	and	understand	primitive	types,	their	
accuracy,	memory	requirements		

2) Declarations	and	initialization	of	primitive	
types.	

3) Demonstrate	integral	arithmetic	including	
mod.	

4) Explain	casting	and	differentiate	between	
implicit	and	explicit	casting.	

b. Strings	
c. Arrays	

	

	 	

Course	Tasks	
	

In	this	class,	you	must	show	mastery	of	each	concept	by	completing	a	projects.	Each	assignment	is	worth	6	
points	except	for	the	final	project,	which	is	worth	18	points.	

Points	are	awarded	as	follows:	

• 6	points	-	All	aspects	of	the	assignment	are	met.		This	not	only	includes	the	core	concept	from	the	lesson,	
but	clear,	well	written	code.		Clear,	well	written	code	means	code	that	is	readable	and	includes	
comments	and	whitespace	with	no	unused	variables	or	instructions.	

• 5	points	-	All	aspects	of	the	assignment	are	met	and	there	is	no	unnecessary	code,	but	prompts	and	
messages	are	not	user	friendly	or	the	code	is	not	easy	to	read	due	to	a	lack	of	comments	and/or	
whitespace..	

• 3	-	4	points	-	The	program	compiles	and	the	core	concept	from	the	lesson	is	used	correctly,	but	the	code	
is	hard	to	read	and/or	includes	unnecessary	code.		Some	of	the	instructions	for	the	assignment	weren't	
followed.	

• 1	-	2	points	-	The	program	compiles	but	the	core	concept	from	the	lesson	is	only	partially	used	or	used	
incorrectly.		Some	of	the	instructions	for	the	assignment	weren't	followed.	

• 0	points	-	The	program	doesn't	compile,	there	are	runtime	errors,	or	the	core	concept	from	the	lesson	
wasn't	used.		Some	or	all	of	the	instructions	for	the	assignment	weren't	followed.	
	

If	there	are	error(s),	then	I	will	let	you	know	and	return	the	assignment	to	you.		You	should	then	correct	the	
assignment	and	resubmit	it.		

Every assignment has a due date. To get full credit for the assignment it must be submitted by the due date. You	
may	turn	them	in	late	but	there	will	be	a	one	point	penalty	if	you	do.	You	may	resubmit	projects	after	they	are	
returned	to	raise	your	grade	(although	you	will	not	be	able	to	recoup	the	point	lost	for	turning	it	in	late).		There	is	
no	late	penalty	for	resubmissions,	only	original	submissions.	The	final	deadline	for	all	submissions	and	re-
submissions	is	Dec.	8.		This	is	a	hard	deadline	and	no	assignments	will	be	accepted	after	that	date.	
	

Assignment	Tasks	and	Grading	

Your	final	grade	will	be	determined	by	the	number	of	assignments	you	complete.			Each	assignment	is	worth	6	
points	except	for	the	Final	Project,	which	is	worth	18	points.		There	are	12	assignments	and	the	Final	Project	for	
a	total	of	90	points.	The	grade	scale	for	your	letter	grade	is:	
	

• A:		81	-	90	points	
• B:		72	-	80	points	
• C:		63	-	71	points	
• D:		45	-	62	points	
• F:					0	–	44	points	

	
	
	
	

	

Learning	Resources	
	

We	will	be	using	an	online	resource	called	Revel	in	this	course.		The	Revel	site	has	an	electronic	copy	of	the	
textbook	as	well	as	videos	and	“check	your	understanding”	quizzes.		It	will	be	the	main	source	of	information	
about	the	Java	programming	language.		It	is	essential	for	you	to	have	access	to	the	site.		Note	that	this	is	only	a	
tool	to	help	you	learn	the	Java	programming	language.		All	due	dates	and	other	course	requirements	are	listed	
in	the	Laulima	course	site.	
	

	

We	will	use	Laulima	for	submitting	and	returning	all	assignments.		All	grades	will	be	posted	in	Laulima	and	
you	will	be	able	to	track	your	progress	by	utilizing	the	gradebook.		You	will	be	able	to	post	and	read	
questions	and	comments	on	the	discussion	boards.		Use	the	private	message	tool	in	Laulima	to	contact	the	
instructor.	
	
We	will	be	using	the	Java	programming	language	to	develop	our	programs.		Go	to	the	Java	Download	Page	
(http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html)	to	download	the	
latest	SE	JDK.		It	is	vital	that	you	install	it	correctly,	including	setting	the	correct	path	environment	
Although	it	isn’t	necessary,	I	also	recommend	you	use	an	Integrated	Development	Environment	such	as	jGrasp	
(http://jgrasp.org).			I	do	not	recommend	using	NetBeans	or	Eclipse	at	this	time.		Both	insert	code	in	your	projects	
that	could	keep	it	from	compiling	from	the	command	line.	
	
As	an	alternative,	you	can	use	the	uhunix	(type	ssh	username@uhunix.hawaii.edu	at	the	command	line.	
Replace	username	with	your	UH	username)	or	an	online	development	site	such	as	Cloud9	IDE	(https://c9.io).		
	
	

Other	resources	
	
Tutoring	may	be	available	from	the	TRIO	office	in	the	Library	Learning	Commons	on	the	WCC	campus.	
	

Policies	
	
Disabilities	Accommodation	Statement	
If	you	have	a	physical,	sensory,	health,	cognitive,	or	mental	health	disability	that	could	limit	your	ability	to	fully	
participate	in	this	class,	you	are	encouraged	to	contact	the	Disability	Specialist	Counselor	to	discuss	reasonable	
accommodations	that	will	help	you	succeed.	Ann	Lemke	can	be	reached	by	phone	at	235-7448,	by	email	at	
lemke@hawaii.edu,	or	by	stopping	by	her	office	in	Hale	‘Akoakoa	213	for	more	information.	
	
Academic	Dishonesty	-	Cheating	and	Plagiarism	
You	are	responsible	for	the	content	and	integrity	of	all	work	you	submit.	The	guiding	principle	of	academic	
integrity	will	be	that	all	files,	work,	reports,	and	projects	that	you	submit	are	your	own	work.		
	
You	will	be	guilty	of	cheating	if	you:	

• Represent	the	work	of	others	as	your	own	(plagiarism).	
• User	or	obtain	unauthorized	assistance	in	any	academic	work.	
• Give	unauthorized	assistance	to	other	students.	

• Modify,	without	instructor	approval,	an	examination,	paper,	record,	or	report	for	the	purpose	of	obtaining	
additional	credit.	

• Misrepresent	the	content	of	submitted	work.	
	
Netiquette	
Whenever	you	post	something	to	the	discussion	board	or	other	online	forums,	you	are	expected	to	follow	proper	
netiquette.		Be	respectful	at	all	times.		Do	not	use	obscene	language	or	make	disparaging	comments,	even	if	it	is	
meant	as	a	joke.		Remember	that	others	cannot	see	your	facial	expression	nor	hear	your	tone	of	voice,	so	they	will	
not	know	you	are	trying	to	be	witty.		Do	not	use	all	caps.		Using	all	caps	is	normally	interpreted	to	be	shouting.	
	
Discussion	Boards	
Discussion	boards	are	to	be	used	for	class	work	only.		Do	not	post	political	or	other	comments	or	statements,	nor	
solicit	sales	for	any	type	of	product.		Your	instructor	will	be	monitoring	all	communication	in	Laulima	and	will	take	
appropriate	action	when	necessary	

	
	
	

	
A	Final	Thought	

	

All	programming	languages	use	the	same	basic	concepts.		By	learning	the	concepts	and	writing	your	initial	
program	in	pseudocode,	you	should	be	able	to	use	any	programming	language	to	code	your	software.	 It	is	vital	
that	you	understand	these	concepts.		You	will	use	them	throughout	your	studies	in	Computer	Science	and	as	a	
programmer	or	Software	Engineer	afterward.		The	best	way	to	learn	them	is	to	use	them.	 Try	designing	and	
creating	programs	that	you	will	find	useful.		Good	luck!	
	

