Chem 100L Chemistry in Society Laboratory
1 credit (CRN 63194)
M 10:00 AM - 12:45 PM Imiloa 131

INSTRUCTOR: David Reeves
OFFICE: Imiloa 130
E-MAIL: dr6@hawaii.edu
OFFICE HOURS: M 1:00-2:00 (Imiloa 130)
TELEPHONE: 236-9116
EFFECTIVE DATE: Spring 2015

WINDWARD COMMUNITY COLLEGE MISSION STATEMENT

Windward Community College offers innovative programs in the arts and sciences and opportunities to gain knowledge and understanding of Hawai‘i and its unique heritage. With a special commitment to support the access and educational needs of Native Hawaiians, we provide O‘ahu’s Ko‘olau region and beyond with liberal arts, career and lifelong learning in a supportive and challenging environment — inspiring students to excellence.

CATALOG DESCRIPTION

Experiments in everyday chemistry. (2 hrs. 45min lab.)

Prerequisites: Credit or registration in CHEM 100.
WCC: DY

STUDENT LEARNING OUTCOMES

1. Identify/locate laboratory safety equipment and apply laboratory safety procedures.
2. Construct molecular models to determine molecular shape and properties.
3. Assemble apparatus to perform common laboratory techniques to verify fundamental chemistry principles in everyday life.
4. Make and record accurate observations and precise quantitative measurements.
5. Synthesize conclusions based on observations and data in a formal laboratory report.
6. Identify sources of error in laboratory experiments.

LEARNING RESOURCES

Required Textbook: Chemistry 100L Laboratory Manual Fall 2010, edited by L. Colmenares
Course Website: http://laulima.hawaii.edu (use UH email account login and password)
Other Requirements: Scientific Calculator, Lab goggles and Internet Access

PURPOSE OF THE LABORATORY COURSE
The chemistry laboratory allows the student to understand some of the concepts discussed in the lecture more thoroughly. In the laboratory you will be involved with the processes of scientific inquiry. It is the only way for the student to learn the techniques that are so important in chemistry and applied sciences. The student will discover that doing quality work in the laboratory requires a great deal of patience and care.

GRADING

The final grade will be based on the following scheme:

<table>
<thead>
<tr>
<th>Activities</th>
<th>70% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm + Final Exam</td>
<td>30% of total</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The lowest lab report score will be deleted.

Course grades will be assigned as follows:

- **A** -- 90-100%
- **B** -- 80-89%
- **C** -- 70-79%
- **D** -- 60-69%
- **F** -- less than 60%.

For grades I, W, Cr, NC and N -- See college catalog

MODE OF INSTRUCTION

The primary mode of instruction is through the use of hands-on laboratory activities. Each hands-on activity will be preceded by a class discussion based on a pre-lab online homework consisting of a reading assignment and completion of pre-lab questions and problems. The homework and pre-lab may consist of videos, websites and computer programs.

Conduct of the Lab:

- **First 45 min**
 - Discuss answers to pre-lab assignment problems and questions, review important principles and safety precautions, demonstrate new techniques needed or use of new equipment (in Imiloa 111)

- **Remaining time**
 - Perform hands-on activity, record observation and data, calculate results
 - **10 min** Clean-up
 - **Last 30 minutes** Answer Post-lab questions

The activity report may be turned in at the end of the class, or at the latest at the start of the next meeting.

COURSE POLICIES AND TIPS TO SUCCCEED IN THIS COURSE

1. The **Course Content and Schedule** (activity titles and corresponding dates) is listed on the last page. Changes in the schedule will be announced in class (or course website on Laulima) at least a week prior to the affected date. You are responsible for obtaining this information whether or not you were present during the announcement.
2. **Before class.** Each hands-on activity is described in detail in the Lab Manual. PLEASE be prepared for the activity by reading it thoroughly and do the online Pre-Lab homework before coming to class. This will allow you to become familiar with the experiment and to better understand the calculations involved.

3. Bring your *Lab Manual, scientific calculator, lecture textbook* and *a stapler* to class at all times.

4. **Safety** is important. Wear your safety goggles and wear closed-toed shoes (preferably sports shoes) to protect from danger of spilling chemicals. Slippers, sandals or similar footwear are not allowed. **You will NOT be permitted in the lab** if you are not wearing close-toed shoes. Shorts cut above the knee are not allowed. Shirts must have sleeves. A lab coat may be worn if necessary.

5. The *online pre-lab homework* constitutes **10% of the report grade.** Please allot two hours for this activity.

6. Please come to class on time. Attendance in the pre-lab discussion will count **5% of the grade.** *Important background information* about the experiment and safety will be discussed in the Pre-Lab discussion. During the Pre-Lab, you are expected to ask questions and take notes. Pre-lab will meet in Imiloa 111.

7. **During lab (Imiloa 131).** Follow laboratory rules and procedures at all times. Treat all chemicals with respect and wipe up any spill, return all reagents to the proper place, replace lids on bottles and report any accident or problem to the instructor. Follow the directions in the Procedure precisely. Don’t take short cuts or fake results as these are readily spotted. General lab rules and procedures comprise **5% of the report grade.**

8. In the lab, you are to work in pairs. Work cooperatively and maintain a positive attitude. Treat it as an opportunity to learn and do not simply rush through an experiment in order to get out of the laboratory as quickly as possible. **Maintain a positive attitude** and work cooperatively with other students and the laboratory instructor. **Be alert** and maintain presence of mind.

9. **Inappropriate and disruptive behavior** such as activated beepers and cell phones, making offensive remarks, prolonged chattering, etc. will not be tolerated. Do not use cell phones in the classroom or in the laboratory. Please step outside if you need to make a call.

10. When recording a *measurement*, it is expected that the value reflect the precision of the instrument used (never round-off) and affix the correct unit. **Record all your data** neatly in ink and with units. Do not erase original data. If you make a mistake just put a line thru them. Point deductions will be applied to data with incorrect precision.

11. Do a quick calculation to check if results are reasonable before dismantling the setup. **Repeat the experiment** if you make a mistake. Consult the instructor to discuss the probable causes of error before doing the repeat.

12. Use laboratory time efficiently and bear in mind that the experiment should be done at least ten minutes before the end of class for cleanup activity. Leave your laboratory station in
good order when you are finished for the day. Points will be deducted when safety precautions, chemical transfer, clean-up and waste disposal techniques and procedures are not followed.

13. **After completing the lab.** Complete your calculations as soon as possible after the laboratory. Complete all calculations and post lab questions before the end of the period. Do not procrastinate and wait until the night before the next laboratory to write your report. Remember you will need to prepare for the new one as well.

13. **Laboratory reports.** You are expected to turn in an individual report at the beginning of next class. Please answer all the questions and present all data and calculations. Deductions of two to three points for every omission will be implemented.

You are expected to discuss results, calculations and interpretations with your laboratory partner and classmates, but calculations and answers in the report should be completely your own work. Copying someone else’s work or answers is cheating. Students involved in cheating will be assigned a grade of “F” and will be reported to the Dean.

14. A formal laboratory report is required for Experiments on Polymers and Household Chemicals while an informal lab report is required for all the other experiments. Formal reports should follow the standard format. The rubric for grading the formal lab reports and tips on how to write a formal report are found in your Lab Manual. A sample formal lab report is accessible at Laulima.

15. **Late Reports.** If submitted one week after the due date, the lab report (only for labs the student was present) will be given a grade of 70% if complete and 65% if less than complete. The grade assigned will be zero if submitted much later.

16. The graded lab report will be returned to you in the following lab session. Return all graded lab reports to the teacher. They will be returned to you the week before the exam. These will be your primary review materials for the exam. Monitor your class performance by keeping a record of your scores on the table of contents page of the Lab Manual.

17. **Make-up.** No make-up is allowed and the student gets “zero” for the missed lab activity. You cannot turn in a lab report for a missed activity.

18. **Attendance** will be checked at the beginning of each Pre-Lab session.

19. If you have any special learning needs, including hearing/visual impairment, please inform the instructor as soon as possible.

20. Withdrawal with a “W” must be done by March 31.

DISABILITIES ACCOMMODATION
If you have a physical, sensory, health, cognitive, or mental health disability that could limit your ability to fully participate in this class, you are encouraged to contact the Disability Specialist Counselor to discuss reasonable accommodations that will help you succeed in this class. Ann Lemke can be reached at 235-7448, lemke@hawaii.edu, or you may stop by Hale ‘Akoakoa 213 for more information.
COURSE CONTENT AND SCHEDULE

Jan 19 Martin Luther King Day
Mar 6 Excellence in Education
Mar 31 Last Day to officially withdraw
Feb 16 President’s Day
Mar 23-27 Spring Break
Apr 3 Good Friday

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 12</td>
<td>1 Laboratory Safety, Equipment & Procedures</td>
<td></td>
</tr>
<tr>
<td>Jan 19</td>
<td>Martin Luther King Day - No Lab</td>
<td>School Holiday</td>
</tr>
<tr>
<td>Jan 26</td>
<td>2 Elements and Compounds</td>
<td></td>
</tr>
<tr>
<td>Feb 2</td>
<td>3 Molecular Models & Balancing Equations</td>
<td></td>
</tr>
<tr>
<td>Feb 9</td>
<td>4 Measurements and Density</td>
<td></td>
</tr>
<tr>
<td>Feb 16</td>
<td>Presidents' Day - No Lab</td>
<td></td>
</tr>
<tr>
<td>Feb 23</td>
<td>5 Stoichiometry of a Precipitation Reaction</td>
<td></td>
</tr>
<tr>
<td>Mar 2</td>
<td>6 Separating Mixtures using Chromatography</td>
<td></td>
</tr>
<tr>
<td>Mar 9</td>
<td>Midterm Exam (Experiment 1-6)</td>
<td></td>
</tr>
<tr>
<td>Mar 16</td>
<td>7 Acids, Bases, pH Indicators & Neutralization</td>
<td></td>
</tr>
<tr>
<td>Mar 23</td>
<td>Spring Break</td>
<td>School Holiday</td>
</tr>
<tr>
<td>Mar 30</td>
<td>8 Oxidation Reduction</td>
<td></td>
</tr>
<tr>
<td>Apr 6</td>
<td>9 Polymers</td>
<td>Formal Lab Report</td>
</tr>
<tr>
<td>Apr 13</td>
<td>10 Penny Battery</td>
<td></td>
</tr>
<tr>
<td>Apr 20</td>
<td>11 Chemistry in Everyday Life-Household Chem</td>
<td>Formal Lab Report</td>
</tr>
<tr>
<td>Apr 27</td>
<td>12 Soaps and Detergents</td>
<td></td>
</tr>
<tr>
<td>May 4</td>
<td>Final Long Exam (Experiment 7-14) & Check-out</td>
<td></td>
</tr>
</tbody>
</table>

*Subject to change due to lecture alignment, etc.
** Require formal lab reports