WINDWARD COMMUNITY COLLEGE MISSION STATEMENT

Windward Community College offers innovative programs in the arts and sciences and opportunities to gain knowledge and understanding of Hawai‘i and its unique heritage. With a special commitment to support the access and educational needs of Native Hawaiians, we provide O‘ahu’s Ko‘olau region and beyond with liberal arts, career and lifelong learning in a supportive and challenging environment — inspiring students to excellence.

CATALOG DESCRIPTION

This is an introductory course covering linear passive circuits, time domain analysis, transient and steady state responses, phasors, impedance and admittance, power and energy, frequency responses, and resonance.

Activities Required at Scheduled Times Other Than Class Times

In addition to the lecture, there are 2 weekly labs; times are to be determined.

STUDENT LEARNING OUTCOMES

The student learning outcomes for the course are:

1. To understand the rudimentary properties of circuit design and the basic techniques used in their analysis.

2. To determine the difference between passive and active circuit elements and their principles of operation.

3. To understand the basic behaviors of such circuit elements such as resistors, capacitors, inductors, and operational amplifiers.

4. To understand the basic principles of electric power production.
COURSE CONTENT (Very Tentative)

Lecture

<table>
<thead>
<tr>
<th>Topic:</th>
<th>Text:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Syllabus</td>
</tr>
<tr>
<td>DC Circuits</td>
<td>Chap 1</td>
</tr>
<tr>
<td>Basic Laws for Circuit Analysis</td>
<td>Chap 2</td>
</tr>
<tr>
<td>Methods of Analysis</td>
<td>Chap 3</td>
</tr>
<tr>
<td>Thevenin’s and Norton’s Theorem</td>
<td>Chap 4</td>
</tr>
<tr>
<td>Mid Term I</td>
<td></td>
</tr>
<tr>
<td>Operational Amplifiers</td>
<td>Chap 5</td>
</tr>
<tr>
<td>Capacitors and Inductors</td>
<td>Chap 6</td>
</tr>
<tr>
<td>First Order Circuits</td>
<td>Chap 7</td>
</tr>
<tr>
<td>Mid Term II</td>
<td></td>
</tr>
<tr>
<td>Second Order Circuits</td>
<td>Chap 8</td>
</tr>
<tr>
<td>Sinusoids and Phasors</td>
<td>Chap 9</td>
</tr>
<tr>
<td>Oscillators</td>
<td>Chap 10</td>
</tr>
<tr>
<td>Mid Term III</td>
<td></td>
</tr>
<tr>
<td>AC Power Analysis</td>
<td>Chap 11</td>
</tr>
<tr>
<td>Frequency Response and Filtering</td>
<td>Chap 14</td>
</tr>
<tr>
<td>Final</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory

- Introduction; Basic Equipment
- Simple Semi-conductor Lab
- Resistivity Lab
- Oscilloscope Lab
- Electric Deflections Lab
- Kirchhoff’s Rules Lab
- Measurement of Resistance Lab
- Magnetic Field Lab
- Transistor Lab
- Operational Amplifier Lab
- Capacitors and the Time Constant Lab
- RC Circuit Lab

ASSESSMENT TASKS AND GRADING

Grading: Student assessment will be determined from class participation (~10%), homework (~25%), 3 midterms (~30%), Lab reports (~15%), and the Final (~20%). All students are required to take the Final exam.
Class Participation – In addition to the class lecture, students are to take part in the problem solving that will be emphasized each class.

Homework – A homework assignment will be given each class. The assignment is due at the beginning of the next class period. Since the assignment is covered immediately after collection, no Late assignments will be accepted. It is strongly urged that students make copies of their assigned work, to annotate during the solution session.

Lab Reports – lab reports for experiments will be due the next lab session after the experiment was completed.

Exams – There are three midterm exams, each yielding approximately 10% of the overall point total of the semester grade. The final exam is at the scheduled time, and is worth approximately 20% of the overall point total of the semester grade.

LEARNING RESOURCES

Fundamentals of Electric Circuits (4th Ed)
C. K Alexander, M. N. O. Sadiku; McGraw Hill Publishers

Additional Information

Other texts that the student may reference are:

The Art of Electronics
P. Horowitz, W. Hill; Cambridge University Press

Barron’s Electronics the Easy Way
R. Miller, R. M. Miller; Barron’s Publishing

Experiments in Physics; A Laboratory Manuel for Scientists and Engineers
D. W. Preston; J. Wiley and Sons Publishers

Physics Laboratory Experiments (5th Ed)
J. D. Wilson; Houghton Mifflin Co.

General Physics Laboratory II; Electricity Magnetism, and Optics
F. A. Harris; Kendall Hunt Publishing

DISABILITIES ACCOMMODATION STATEMENT

If you have a physical, sensory, health, cognitive, or mental health disability that could limit your ability to fully participate in this class, you are encouraged to contact the Disability Specialist Counselor to discuss reasonable accommodations that will help you succeed in this class. Ann Lemke can be reached at 235-7448, lemke@hawaii.edu, or you may stop by Hale ‘Akoakoa 213 for more information.