WINDWARD COMMUNITY COLLEGE MISSION STATEMENT

Windward Community College is committed to excellence in the liberal arts and career development; we support and challenge individuals to develop skills, fulfill their potential, enrich their lives, and become contributing, culturally aware members of our community.

CATALOG DESCRIPTION
Companion laboratory class to AQUA 201, The Hawaiian Fishpond. This class provides hands-on experiences studying Hawaiian fishponds, their construction and operation, oceanography, biology, ecology, and restoration (3 hours lab)

PREREQUISITES
Prior or concurrent registration in AQUA 201.

REQUIREMENTS SATISFIED BY THIS CLASS
• May be used to satisfy AA and Bachelor's degree diversification requirements for a science laboratory (DY) class at different campuses within the UH system.
• May partially satisfy requirements for the University of Hawai‘i Marine Option Program Certificate as a marine-related elective.
• May partially satisfy requirements for the Windward Community College Academic Subject Certificate in Bio-Resources and Technology, Bio-Resources Development and Management Track (Elective Set I: Technology, Utilization and Management).

STUDENT LEARNING OUTCOMES
The learning outcomes for this course are:
• Use the scientific method of inquiry to study a Hawaiian fishpond.
• Apply the concepts learned in AQUA 201 to an experimental and hands-on observational setting.
• Use analytical tools and instruments to study the oceanography, biology and ecology of Hawaiian fishponds.
• Collect, reduce, and interpret data.
• Prepare written objective reports describing and interpreting experimental and observational results.
• Identify and classify common fishpond species.
• Design a Hawaiian fishpond.
• Manage all aspects of a Hawaiian fishpond.
COURSE CONTENT

• The scientific method of inquiry, providing examples of its use, and demonstrating this method through written reports and summaries of class laboratory and field activities.

• The collection, reduction, interpretation, and presentation of scientific data in the form of laboratory/field reports and summaries.

• Construction, characteristics, operation, and management (stocking, cultivation, harvesting and maintenance) of the various types of traditional Hawaiian fishponds and how they relate to modern aquaculture practices.

• The use of some of the tools used to study the oceanography, biology and ecology of Hawaiian fishponds (e.g., dichotomous keys, water samplers, plankton nets, aquatic animal traps & nets, microscopes, scales, pH meters, nutrient test kits, oxygen meters, salinometers, refractometers, conductivity meters, turbidimeters, light meters, secchi disks, and other analytical tools).

• Analysis of the physical and chemical environment (e.g., bathymetry, water circulation, tidal flux, stratification, water chemistry and properties, sediments, and nutrients) provided to the species that inhabit the fishpond.

• Identification, classification and characteristics of fishpond species.

• Fish external and internal anatomy.

• Identification of fish diseases.

• The integration between traditional practices and modern aquaculture methodologies (by comparing traditional fishponds to modern aquaculture facilities)

• Archaeological analysis of a fishpond

• Hawaiian fishpond restoration: approaches, problems and possible solutions, and examples of restoration projects.

COURSE TASKS ASSESSMENT AND GRADING

LABORATORY ATTENDANCE AND PARTICIPATION. Regular attendance and active participation are expected (10 points each lab/field session; 130 points total). Because laboratories involve considerable set-up/take-down time and supervision, students will NOT be able to make up missed laboratory activities. A student missing a scheduled laboratory activity because of an illness or legitimate emergency may be given an alternative activity to make up lost lab summary points. In such a circumstance, the student is still responsible for the information presented during the missed laboratory session. Regardless of the reason, A STUDENT MISSING MORE THAN TWO SCHEDULED LABORATORY SESSIONS WILL NOT RECEIVE CREDIT FOR THE COURSE.

LAB/FIELD SAFETY QUIZ. The student will complete a quiz assessing the student’s knowledge and understanding of laboratory and field safety practices. This quiz will be taken online via the class Laulima site (20 points).

LABORATORY NOTEBOOK. The student will maintain a laboratory notebook to record all notes, observations, and information gathered before and during laboratory and field activities. This notebook must be brought to every laboratory period. This notebook will be collected and graded twice during the semester (35 points for each collection; 70 points total). The type of notebook and the kind of information required will be explained during the introductory lab session.
LABORATORY/FIELD SUMMARIES. The student will complete a total of five written laboratory/field summaries (20 points each) corresponding to specific laboratory/field activities. Each summary must be completed and turned in no later than the beginning of the first laboratory meeting after the assignment was given. The production of laboratory summaries should be considered an individual student task. These summaries will generally be due during the next lab meeting after the lab activity (official due dates will be presented the day of the lab activity). Assignments received late (up to one week late) will be assessed an automatic three-point penalty reduction taken after the assignment has been scored for content. Late assignments will not be accepted if submitted more than one week past the due date.

REACTION REPORTS. The student will complete a total of eight written reaction reports (10 points each) corresponding laboratory/field activities not requiring a summary. In these reports the student will describe the purpose of the activity, tasks carried out, and what the student learned by participating in the activity. These reports will generally be due during the next lab meeting after the lab activity (official due dates will be presented the day of the lab activity). Assignments received late (up to one week late) will be assessed an automatic two-point penalty reduction taken after the assignment has been scored for content. Late assignments will not be accepted if submitted more than one week past the due date.

LAB ATTIRE, CONDUCT AND HYGIENE. Because biology labs often involve working with hazardous materials and living organisms, students must dress appropriately. Students must wear closed-toe shoes in the lab and field. Students may also purchase a lab coat for classroom lab activities at the college bookstore. In addition, some lab activities will require students to wear gloves and safety glasses (provided by the college). Students failing to dress appropriately for lab or field activity will not be permitted to participate in the activity and will be considered to be absent for the missed lab session. Students engaged in conduct that threatens the safety of themselves and others in the lab will be refused access to the class for the remainder of the semester and will receive an “F” for the course. Students are also expected to clean up their workstations following the lab activities. Failing to do so will lead to a 5-10 point penalty depending upon the seriousness of the infraction.

The assignment of points will be according to the following protocol:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance & Participation</td>
<td>130</td>
</tr>
<tr>
<td>Safety Quiz</td>
<td>20</td>
</tr>
<tr>
<td>Laboratory Notebook</td>
<td>70</td>
</tr>
<tr>
<td>Lab/Field Summaries</td>
<td>100</td>
</tr>
<tr>
<td>Reaction Reports</td>
<td>80</td>
</tr>
<tr>
<td>TOTAL</td>
<td>400</td>
</tr>
</tbody>
</table>

Letter grades will be assigned as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% or above in total points & not missing more than two scheduled laboratory activities.</td>
</tr>
<tr>
<td>B</td>
<td>80-89.9% of total points & not missing more than two scheduled laboratory activities.</td>
</tr>
<tr>
<td>C</td>
<td>65-79.9% of total points & not missing more than two scheduled laboratory activities.</td>
</tr>
<tr>
<td>D</td>
<td>55-64.9% of total points & not missing more than two scheduled laboratory activities.</td>
</tr>
<tr>
<td>F</td>
<td>Below 55% of total points or informal or incomplete official withdrawal from course, or if a student misses more than two scheduled laboratory activities for reasons other than documented illness or emergency.</td>
</tr>
<tr>
<td>Grade</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete; given at the INSTRUCTOR'S OPTION when student is unable to complete a small part of the course because of circumstances beyond his or her control. It is the STUDENT'S responsibility to make up incomplete work. Failure to satisfactorily make up incomplete work within the appropriate time period will result in a grade change for "I" to the contingency grade identified by the instructor (see catalog); may be issued if documented serious illness or emergency forces a student to miss more than one scheduled laboratory activity.</td>
</tr>
<tr>
<td>CR</td>
<td>65% or above in total points; the student must indicate the intent to take the course as CR/NC in writing by the end of the 10th week of classes (see catalog).</td>
</tr>
<tr>
<td>NC</td>
<td>Below 65% of total points; this grade only available under the CR/NC option (see above and see catalog).</td>
</tr>
<tr>
<td>N</td>
<td>NOT GIVEN EXCEPT UNDER EXTREMELY RARE CIRCUMSTANCES (e.g., documented serious illness or emergency that prevents the student from officially withdrawing from the course); may be issued if documented serious illness or emergency forces a student to miss more than one scheduled laboratory activity; never used as an alternative for an "F" grade.</td>
</tr>
<tr>
<td>W</td>
<td>Official withdrawal from the course after the third week and prior to the end of the 10th week of classes (see catalog).</td>
</tr>
</tbody>
</table>

Waiver of minimum requirements for specific grades may be given only in unique situations at the instructor's discretion.

Students involved in academic dishonesty will receive an "F" grade for the course. Academic dishonesty is defined in WCC's college catalog.

LEARNING RESOURCES

Supplemental Reading (some of these, or sections of them, may be made available as pdf files on the course Laulima site):

Handouts and selected readings from various texts will also be distributed in class or through the Internet.

STUDENT RESPONSIBILITIES

- Students should carefully review the information detailing inherently dangerous activities of this course (see below) and sign the appropriate U.H. Assumption of Risk and Release and Medical Consent forms.

- Students are expected to adhere to the *Responsibilities of Students in the Laboratory* and the *Responsibilities of Students in the Laboratory* described in this document (see below). Students failing to follow these rules may be prohibited from participating in the lab or field activity and will receive a “0” for this missed session (no make-up activity will be provided for a session missed for this reason). Repeated infractions or behaviors that endanger the health and safety of others or affect the operation of lab and/or field equipment may result in disciplinary action (e.g., referral to the Vice Chancellor of Student Services and/or a “F”, failing grade, in the course).

- Students are expected to participate in all laboratory activities and complete all course assignments on time.

- Each student is responsible for his or her own work. No joint assignment submissions (assignments submitted by more than one student) will be accepted. Assignments that incorporate all or parts of another student’s work will be considered plagiarized and result in
a “0” score for both students. These students may be referred to the Vice Chancellor of Student Affairs for appropriate disciplinary action (see WCC catalog).

- Students are expected to be prepared in advance when they arrive to class. Being prepared includes the following: having already read text materials (e.g., textbook readings and handouts) assigned for that day's activities, bringing required work materials (e.g., lab notebook, lab description, other handouts, writing supplies, etc.), and having completed any assigned pre-lab tasks.

- Any changes in the course schedule, such as examination dates, deadlines, etc., will be announced ahead of time in class and/or on the course Laulima site. It is the student’s responsibility to be informed of these changes. Students should visit the course Laulima site at least twice per week.

- It is the student's responsibility to be informed about deadlines critical to making registration changes (e.g., last day of erase period and last day for making an official withdrawal.

AQUA 201L LABORATORY AND FIELD ACTIVITIES

Students enrolled in AQUA 201L are advised that certain required course activities are inherently dangerous and may require normal physical abilities. Students are therefore required to read about the inherently dangerous activities described below. In addition, students must read and demonstrate knowledge of their responsibilities while engaged in these activities.

Some students may have physical conditions that restrict their participation in certain laboratory activities. Respiratory ailments, certain allergies, and pregnancy may be among these conditions. Students exhibiting any of these conditions, or any other condition that may be impacted adversely by participation in the activity, should consult a physician.

Inherently Dangerous Activities

- Students in the science laboratory may be exposed to chemicals (e.g., formaldehyde, organic solvents, acids, and other caustic chemicals), chemical fumes, laboratory equipment and supplies (e.g., scalpels, razor blades, glass slides, cover slips, and electrical equipment), toxic or irritating properties of living and dead animals, human organic matter (e.g., saliva and blood), and other materials necessary to laboratory activities of this or other laboratory classes. Other possible hazards include broken glass on the floor or counters, combustible materials (e.g., Bunsen burner gas), and slippery spills.

- During field activities students face risks such as accidents while en route to and from field destinations, falling out of boats, slipping on wet surfaces, stepping on sharp objects, large waves, strong currents, and dangerous marine life.

Responsibilities of Students in the Laboratory

- Students should be familiar with safety procedures and take appropriate precautions at all times to insure the safety of every student in the lab.

- Students should follow instructions carefully, especially when hazardous conditions occur or hazardous materials are being used.

- Students should locate the placement of safety equipment and supplies in the laboratory: safety shower, eye wash station, fire extinguisher, and first aid kit. Students should understand the use of this equipment. Also note the locations of exits.

- Anyone injured in the lab, should inform the instructor immediately and take immediate action to reduce the risk of further injury.
• Students should familiarize themselves with the fire procedures. Extinguish small fires, but leave the building immediately should a major fire occur. Notify the appropriate authorities - don't assume someone else remembered to do it. Meet with other students and your instructor outside the building before leaving so that an accurate headcount may be made.

• Students should dress appropriately in the lab. Closed-toe shoes are required in the laboratory. Students may elect to supply their own gloves and protective aprons or laboratory coats. Some lab activities may require protective eyewear and gloves (provided for the activity by WCC).

• Students should report all hazardous conditions to the instructor immediately.

• Chemicals may be poisonous, corrosive, or flammable. No chemicals, even chemicals known to be safe, should be ingested, inhaled, or touched unless specifically directed to do so by your instructor.

• All organisms, living or dead, should be treated with care and respect. Avoid direct handling when possible.

• The safe use of specific equipment and tools (e.g., microscopes, slides, scalpels, and pipettes) will be demonstrated by the instructor during the laboratory sessions. Students should be sure they understand this usage.

• Students should clean up any supplies used and should return materials where they belong as instructed. Any material spilled should be cleaned appropriately. Report any hazardous spills or breakages.

• Broken glass and sharp metal waste should be placed only in those receptacles marked for such disposal -- do not put these materials in normal trash receptacles.

• Some chemical wastes may not be dumped into laboratory sinks. In such circumstances an appropriate container will be provided for this waste in the lab.

• Organic waste resulting from animal dissection activities should be disposed of in the appropriate receptacle, not the ordinary trash receptacles.

• Human organic materials (e.g., saliva and blood) must be disposed of in such a way as to eliminate any possibility for contamination and the spread of disease. Appropriate handling and disposal procedures will be explained when human materials are involved in the laboratory exercise.

• After completing laboratory activities and clean up, students should wash their hands in the restroom to avoid spreading contamination and hazardous chemicals.

• The laboratory is a place for learning. Therefore, eating, drinking, and playing around is prohibited during the laboratory session. Students exhibiting unsafe or inappropriate behavior in the lab may be asked to leave and may be given an "F" grade for the course.

Responsibilities of Students in the Field

• Field excursions may involve carpooling to field destinations. Drivers are expected to have valid Hawai‘i driver's licenses, drive safely, and follow all traffic laws. Passengers should not disturb drivers.

• When in the field, students should use the buddy system. Partners should have comparable physical skills and should keep track of each other at all time.
- Students should wear clothing appropriate for the activity and should anticipate all possible weather conditions. Land/shoreline activities require loose-fitting clothing that protects the extremities from sunlight and abrasions (note that this clothing may get wet). Footwear should allow stable walking on rough and/or slippery surfaces (slippers or other open-toe footwear are not acceptable). A hat and sunglasses are also highly recommended. For water activities, a wet suit, or long pants and sleeves, worn over swimsuits, are recommended. Gloves and protective footwear are essential. Students should apply sunscreen.

- When looking under rocks or ledges, students should be prepared for encounters with dangerous marine animals, such as eels, lionfish, and sea urchins. Unless specifically instructed to do so, students should not touch any marine organism.

- Students should familiarize themselves with potential hazards in an area before beginning an activity. Watch for large waves and dangerous currents. If conditions should become dangerous after the activity starts (e.g., waves pick up or dangerous marine life enters the area), the student should leave the area immediately. Students should inform the instructor immediately when dangerous conditions arise. A student should never feel compelled to do an activity that seems hazardous. A student should refuse to carry out an activity that exceeds his or her physical capabilities.

- Anyone injured in the field, should inform the instructor immediately and take immediate action to reduce the risk of further injury. Before an activity begins, students will be informed of the location of the first aid kit (which will be taken on every excursion).

- No one should operate a powerboat without specific training. While in powerboats, students should remain seated at all times. No powerboat should be used without proper safety gear (i.e., first aid kit, life vests, oars, anchor, flares and other essential gear).

HOW TO SUCCEED IN THIS CLASS

- The student should arrive on time and participate actively in each laboratory session until the session formerly ends.

- The student should complete and submit all assignments (pre-lab quizzes, lab summaries, and lab notebook reviews) on time.

- The student should download and read carefully the upcoming lab description from the course Laulima site as soon as the description is available. A hardcopy of this description should be brought to the laboratory session.

- Complete all pre-lab tasks (e.g., lab notebook preparation) in a timely manner.

- Document what was learned in the laboratory session while this session is underway, entering instructor presentation notes, changes to procedures, observations made, and other relevant information into the laboratory notebook.

- The student should review this laboratory notebook as soon as possible after the lab session as concluded to ensure that all relevant information has been recorded. Any missing information or useful additional information should be added to the notebook at this time.

- Students are recommended to establish work groups and work together. The students in these groups may test each other's knowledge and understanding of the information. They may also take turns teaching each other.

- The student should ask the instructor to explain the things that the student does not understand.
DISABILITIES ACCOMMODATION STATEMENT

If you have a physical, sensory, health, cognitive, or mental health disability that could limit your ability to fully participate in this class, you are encouraged to contact the Disability Specialist Counselor to discuss reasonable accommodations that will help you succeed in this class. Ann Lemke can be reached at 235-7448, lemke@hawaii.edu, or you may stop by Hale `Akoakoa 213 for more information.

Tentative Schedule of AQUA 201L Activities

Spring 2013

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Jan</td>
<td>Course Introduction Lab and Field Safety</td>
<td>Safety Quiz (20 points)</td>
</tr>
<tr>
<td>19-Jan</td>
<td>Windward Regional Science Olympiad</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>26-Jan</td>
<td>Waikalua Loko: Throw Net Demonstration by Willis Motooka</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>2-Feb</td>
<td>Waikalua Loko: In Situ Water Quality Measurements at the Pond</td>
<td>Lab Report (20 points)</td>
</tr>
<tr>
<td>9-Feb</td>
<td>WLFPS Community Work Day Service Project</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>16-Feb</td>
<td>Laboratory-Based Water Quality Measurements</td>
<td>Lab Report (20 points)</td>
</tr>
<tr>
<td>23-Feb</td>
<td>Waikalua Loko: Net Making by Fred Takabayashi</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>2-Mar</td>
<td>Waikalua Loko: Current Measurements</td>
<td>Lab Report (20 points)</td>
</tr>
<tr>
<td>9-Mar</td>
<td>Fishpond Field Trip I</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>16-Mar</td>
<td>Fishpond Field Trip II</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>23-Mar</td>
<td>SPRING RECESS</td>
<td></td>
</tr>
<tr>
<td>30-Mar</td>
<td>SPRING RECESS</td>
<td></td>
</tr>
<tr>
<td>6-Apr</td>
<td>Archaeological Analysis of Fishpond History by Hal Hammatt of Cultural Surveys Hawai`i</td>
<td>Lab Report (20 points)</td>
</tr>
<tr>
<td>13-Apr</td>
<td>WLFPS Community Work Day Service Project</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>20-Apr</td>
<td>Aquaculture Facility Field Trip</td>
<td>Reaction Report (10 points)</td>
</tr>
<tr>
<td>27-Apr</td>
<td>Waikalua Loko: Pond Bathymetry and Sediments</td>
<td>Lab Report (20 points)</td>
</tr>
</tbody>
</table>