ASTR 110 WI INTRODUCTION TO ASTRONOMY
CRN 64016, Credits: 3
MW 8:30-9:45 AM, Imiloa 133

INSTRUCTOR: Marvin Kessler
OFFICE: Hale Imiloa 136
OFFICE HOURS: MW, 11:15AM-12:15PM
TELEPHONE: 222-6573 EMAIL: mkessler@hawaii.edu
EFFECTIVE DATE: Spring Semester, 2012

WINDWARD COMMUNITY COLLEGE MISSION STATEMENT
Windward Community College offers innovative programs in the arts and sciences and opportunities to gain knowledge and understanding of Hawai‘i and its unique heritage. With a special commitment to support the access and educational needs of Native Hawaiians, we provide O‘ahu’s Ko‘olau region and beyond with liberal arts, career and lifelong learning in a supportive and challenging environment — inspiring students to excellence.

CATALOG DESCRIPTION
Introduction to the astronomical universe for non-science students. (3 hrs. lect.)

Activities Required at Scheduled Times Other Than Class Times
One Star-Gazing show at the Imaginarium. These shows are held at 7:00 PM on the second Wednesday of each month. Substitution is permitted if student is unable to come at that time because of work commitment or similar serious impediment. Substitution must be approved by instructor.

STUDENT LEARNING OUTCOMES
Upon successful completion of the course, the student will be able to:
• Outline the development of astronomy from ancient times to present and explain the role of the scientific method in this historic context.
• Describe and explain the apparent motions of the celestial bodies, especially as related to naked-eye observations.
• Identify the appropriate instruments used by astronomers to understand the universe.
• Outline the origins of our solar system and appraise the leading cosmological theories of the origin of the universe.
• Describe the physical and chemical properties of the objects in our solar system and apply the concept of comparative planetology.
• Describe the physical and chemical nature of stars, and especially our sun, and apply the astronomical techniques used to measure stellar properties.
• Outline the evolutionary stages in a star's life and compare and contrast the structure of our Milky Way and other galaxies.
• Apply astronomical concepts to the search for extraterrestrial life.
1. **Division of time**
Class on **Monday** will be devoted to lecture and assignments. Important sections of the textbook also will be highlighted. The focus of this first class of the week will be to listen, take direction, and read. Between Monday and Wednesday the student should read the assigned pages of the textbook, outline them, do the homework, and answer the pertinent quizzes at the end of the chapter.

Class on **Wednesday** will be devoted to reports by students on the assignments that were given on Monday. Extensive use will be made of the workbook, *Lecture Tutorials for Introductory Astronomy*. There will be use of dyads and small groups for discussion. This is a day that will focus on active learning. At the end of the class there will usually be time to write a “one minute paper” or take a short quiz, which will be handed in to the instructor. Some of these will be used for grading. Students will be informed in advance if the paper or quiz will be graded.

2. **Writing**
In a writing intensive course the student is expected to use writing as a way to stimulate critical thinking. This process is well explained by John Bean in his book, *Engaging Ideas*, where he focuses on writing as critical thinking. There he explains that writing can actually contribute to critical thinking, not just report it after the fact. In academic writing, students often come away with the mistaken notion that there is a divorce between thinking and writing. First you think, and then you write down what you think. Bean’s article explains that in real life most writers come to their insights while writing. That probably is not the case in much scientific reporting where data has been gathered, reduced, and the conclusion reached before writing. Then there is just the reporting of the outcome. However, even then there may be times when the conclusion becomes clearer during the writing.

In WI-Introduction to Astronomy students are encouraged to gain insight by writing, but, if they are not able to achieve that lofty goal, they at least are expected to learn from writing. A fuller description of the requirements of a WI course is given on page 33 in the 2011-2013 catalog. As a quantitative measure, a WI course requires about 4,000 words of writing.

3. **Conferences**
At least one formal conference will be held with each student. Frequent brief conferences before and after class and via email are also encouraged. This is in addition to the exchange of written comments and suggestions by teacher and student.

4. **Participating**
Students are expected to participate fully with the instructor and their classmates through lecture-tutorial exercises, asking questions in class, and contributing to discussion.

5. **Reading**
The basic information source is the textbook (listed below). The class calendar (also listed below) gives dates on which each chapter of the textbook will be covered.

6. **Calculating**
Calculators are not required, but a ruler with both metric and English measurements on it will be needed. Calculators will be helpful for extra credit homework.
ASSESSMENT TASKS AND GRADING

1. Homework. Homework will be assigned on Monday and handed in at the beginning of class on Wednesday. Homework is not graded. The purpose of homework is to point out the most important topics for the student to study. Late homework will not be accepted. Students who do not hand in homework on time are still expected to complete the homework in preparation for tests. In general, mathematical problems will not be assigned.

2. There will be four written tests, which will be given on the dates indicated on the class calendar. Each test will be worth 25 points, for a total of 100 points for the semester. There will be five questions on a test. Each answer should comprise about 100 words, with a total of 500 words for the entire test. The 500 words count toward the four thousand word goal of a writing intensive course. The five questions will be taken from the questions that were given for homework. Scores will be based on content (10 points), organization (5 points), spelling (5 points), and grammar (5 points). The scoring will be explained further in class. “Blue Books” should be used for the tests.

3. Video Papers. During the semester five videos on various topics will be shown. These have been chosen based on their astronomical content and excellence of presentation. The student will be expected to write a reaction paper on each of these videos. The paper will be worth 25 points toward the final grade. The paper should be about 500 words in length. This will count toward the WI goal. Scores will be based on organization (10 points), grammar (10 points), and spelling (5 points). A rubric for doing this will be provided.

4. Attendance at one Wednesday evening Star Show in the Imaginarium will be obligatory. It will be worth 10 points. A brief report must be submitted within one week. In writing this report, use the form that is attached at the end of this syllabus. If the student cannot attend the Star Show because of work or other serious commitment, a substitute is available.

5. The Final Exam will be worth 100 points. It will consist of 50 multiple-choice questions about the astronomical material that we covered in the course. A study guide will be provided.

This adds up to a total of 260 possible points, as follows:

<table>
<thead>
<tr>
<th>Four Tests (25 points each)</th>
<th>100 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five Video Papers (25 points each)</td>
<td>100 points</td>
</tr>
<tr>
<td>Wednesday Star Show</td>
<td>10 points</td>
</tr>
<tr>
<td>Final Exam</td>
<td>100 points</td>
</tr>
<tr>
<td>TOTAL</td>
<td>260 points</td>
</tr>
</tbody>
</table>

None of the quizzes or video papers may be taken late. The four 25 point tests may be taken late, only if Mr. Kessler is contacted the day of the test, and he agrees to this. This may be done by telephone (222-6573) or by email (mkessler@hawaii.edu). On tests, quizzes, and video papers the points earned will be reported to the student. At mid-term a letter grade will be given, and the final grade for the course will be a letter grade.
Correspondence between points and letter grade will be as follows:

A- 90% to 100% of points,
B- 80% to 89% of the points,
C- 70% to 79%,
D- 60% to 69%,
F- 0 to 59%.

The grading standards given in the 2011-2013 Windward Community College Catalog, page 25, will be followed. The Catalog allows for other assigned grades. **Students are encouraged to consult the instructor at any time about their grade.** If a student wishes to be informed of his/her final grade in advance of the official posting of grades at the end of the semester, he/she should request this via email or should provide the instructor with a stamped, self-addressed postcard or envelope on the day of the Final Exam.

LEARNING RESOURCES

REQUIRED TEXT: *The Essential Cosmic Perspective, Custom Edition*, by Bennett, Donahue, Schneider, and Voit. This is a loose leaf printing of the book. It is identical in content to the bound fifth edition of the book.

WEBSITE: www.masteringastronomy.com

Additional Information

Students are strongly encouraged to spend time outside under the stars, identifying constellations, planets, the moon and their motions across the sky. There are some excellent applications that can be downloaded to smartphones and used for this.

Students also are encouraged to visit WCC’s **AEROSPACE LAB**, located in Hale Imiloa, Room 135. Besides a large collection of astronomy related resource materials which the student may borrow, there is a hands-on physical science museum. Phone 235-7321 for availability.

Students are directed to the **IMAGINARIUM** (planetarium) to avail themselves of the programs presented there on the second Wednesday of the month at 7:00 PM and the second Friday of the month at 7:00 PM. Reservations are recommended. Call 235-7433 for the Friday program and 235-7321 for the Wednesday program. Scheduled events are also listed on the college website.

Bundled with the textbook is **Sky-Gazer**, a CD-ROM that can be used as a planetarium in the student’s computer at home or at one of the campus computer labs. This CD has some animated graphics that help to understand seasons, eclipses, and retrograde motion.
Also bundled with the textbook is a folder that contains an access code to the textbook website, www.masteringastronomy.com.

- There is a table in the main hallway of Hale Imiloa that contains handouts (monthly star charts and astronomical events) and a list of internet sites for learning about constellations.
- The bulletin board in Hale Imiloa 133 is used to post print-outs of current astronomical discoveries. Most of these are from http://spaceflightnow.com/news and http://skyandtelescope.com/news.
CLASS CALENDAR FOR SPRING 2012

Week 1 January 9 and 11
Chapter 2, Discovering the Universe for Yourself. Note: we are beginning with chapter 2, not with chapter one.
Monday: Introduction to the course
 Review syllabus
 What would you most like to learn from this course?
 Assigned homework from chapter 2
Wednesday: go over homework
 Video: “Wonders of the Solar System: Aliens”
 Video paper due on Wednesday, January 18.

Week 2 Jan. 16 and 18
Monday is a holiday, Martin Luther King Day. No class.
Wednesday: Continue chapter 2.
 Complete tutorials in Lecture-Tutorial workbook, page 1: “Position”,
 page 3: “Motion”, and page 13: “Seasonal Stars”

Week 3 Jan. 23 and 25
Continue chapter 2.
Monday: Assignment of new homework.
 Lecture on: (1) Daily versus Annual Motion, (2) Seasons
Wednesday: Go over homework from Monday.
 Complete tutorials in Lecture-Tutorial workbook,
 p.79: “The Cause of Moon Phases”

Week 4 Jan. 30 and Feb. 1
Monday: Continue chapter 2.
 Why do eclipses occur? What causes retrograde motion?
Wednesday: Open Notes Test 1

Week 5 Feb. 6 and 8
Monday: Chapter 3, The Science of Astronomy
 New homework assignment. (Homework is assigned each Monday; no further mention will be made of this in this calendar.)
 Go over Test One.
 Preview blue handout on Copernican Revolution
 Chapter 6, Our Solar System and Its Origin
Wednesday: continue chapter 6
 Go over homework(This is done each Wednesday; no further mention will be made of it in this calendar.)
 Quick Quiz on Copernican Revolution
 Lecture on Formation of the Solar System
Week 6 Feb. 13 and 15
Monday: Chapter 7, The Terrestrial Planets, and Chapter 8, Jovian Planet Systems
Focus is on the similarities and differences between Venus, Earth, and Mars
Wednesday: Video: “Wonders of the Solar System: Dead or Alive?”
Video Paper: “Why are Earth, Venus, and Mars so different from each other?” Due on Wednesday, February 22.

Week 7 Feb. 20 and 22
Monday is a holiday, Presidents’ Day. No class.
Wednesday: Chapter 9, Remnants of Rock and Ice: Asteroids, Comets, and Pluto
History of impacts between Earth and Asteroids
Open Notes Test 2

Week 8 Feb. 27 and 29
Monday: Lecture on Chapter 4: Making Sense of the Universe.
Review of scientific notation called “Powers of 10”.
Newton’s Laws: mass, velocity, acceleration
Wednesday: continuation of chapter 4
Gravity
Newton’s version of Kepler’s third law

Week 9 Mar. 5 and 7
Monday: Chapter 5: Light: the Cosmic Messenger.
Wednesday: video on Albert Einstein
Video Paper due on Monday.

Week 10 Mar. 12 and 14
Monday: Chapter 5 continued.
LT, p. 57, on Blackbody Radiation, Parts I and II
Wednesday: Open Notes Test 3
Nuclear fusion in the Sun

Week 11 Mar. 19 and 21
Monday: Chapter 11: Surveying the Stars
Magnitude and Spectral Classes of stars
LT, p. 109: “H-R Diagram”

Spring Recess, March 26-30

Week 12 April 2 and 4
Monday: Continue chapter 11
The Hertzsprung-Russell Diagram
Wednesday: Video, “The Universe: Largest and Smallest”
Video Paper due on Monday.
Week 13 April 9 and 11
Monday: Lecture on Chapter 12, *Star Stuff*,
Go over handout on the Lifeline of stars.
Black Holes.
LT, p. 121, “Stellar Evolution”
Wednesday: Open Notes Test 4

Week 14 April 16 and 18
Monday: Chapter 14, *Our Galaxy*.
Dark Matter
LT, p. 123: “Milky Way Scales”
The Distance Chain: measuring distances in the universe

Week 15 April 23 and 25
Monday: Continue chapter 15 on galaxies.
LT, p. 131: “Looking at Distant Objects”
LT, p. 133, “Expansion of the Universe”
Wednesday: Video, “The Universe: Another Earth”
Video Paper due on Monday.

Week 16 April 30 and May 2
Monday: Review
Wednesday: Review

Week 17 May 7 and 9, FINAL EXAM WEEK

Final Exam is on Wednesday, May 9, at 8:30 AM

The above schedule has been carefully thought out and will be followed as much as possible, but there may have to be adjustments as the semester progresses. The Instructor will inform students of any changes at least one class day in advance. If a student is absent from class when changes are announced, it is the student’s responsibility to find out about the changes.
REPORT

This can be used to report on attendance at Star Shows in the Imaginarium and at Observing Sessions with the telescope. Obtain signature of the attending staff. You may use the reverse side of this page.

Attending Staff: __________________________ Date:______

Description of the show or observing session:

Sketches of Constellations, Planets, other objects seen in the session:

What I found most interesting:

Student Signature_____________________________