Chem 162 L General Chemistry Laboratory II
1 credit (CRN 63270 & 63317)
W 2:00 - 4:45 PM Imiloa 111 & 131

INSTRUCTOR: Leticia Colmenares, Ph.D.
OFFICE: Imiloa 116
E-MAIL: Leticia@hawaii.edu
OFFICE HOURS: MTWR 8:30-9:30 am (Imiloa 116)
TELEPHONE: 236-9120
EFFECTIVE DATE: Fall 2011

WINDWARD COMMUNITY COLLEGE MISSION STATEMENT

Windward Community College offers innovative programs in the arts and sciences and opportunities to gain knowledge and understanding of Hawai’i and its unique heritage. With a special commitment to support the access and educational needs of Native Hawaiians, we provide O‘ahu’s Ko‘olau region and beyond with liberal arts, career and lifelong learning in a supportive and challenging environment — inspiring students to excellence.

CATALOG DESCRIPTION

Laboratory experiments illustrating fundamental principles of chemistry. (Offered Spring semester only) (3 hrs. lab.)
Prerequisites: Credit or registration in Chem 162.
WCC: DY

STUDENT LEARNING OUTCOMES

1. Develop an appreciation for the methods of scientific inquiry through computer-based laboratory experiments showing real-time data.
2. Apply knowledge to determine molar mass of unknown substance using freezing point data of solution.
3. Calculate chemical reaction rate and constant using graphing analysis.
4. Predict the effects of concentration and temperature changes on equilibrium mixtures using Le Chatelier’s principle.
5. Determine whether equilibrium is established and calculate equilibrium concentration constants and cell potentials.
6. Apply and articulate the scientific method by preparing lab reports using the standard scientific format. Express in writing core chemistry principles, results of experiments and do critical thinking by synthesizing conclusions based on observations and data.

LEARNING RESOURCES

Required Textbook: Chemistry 162L Laboratory Manual Fall 2011, edited by Colmenares
Chemistry DVD Notes by K. Trivedi
Course Website: http://laulima.hawaii.edu (use UH email account login and password)
Other Requirements: Scientific Calculator, Lab goggles and Internet Access
Lab requirements: **closed shoes** and **goggles**
Lab attire: A **lab gown** is required if you wear shorts or low-waist pants/skirts or dress.

PURPOSE OF THE LABORATORY COURSE

The chemistry laboratory allows the student to understand some of the theories discussed in the lecture more thoroughly. In the laboratory you will be involved with the processes of scientific inquiry used to discover chemical principles. It is the only way for the student to learn the techniques that are so important in research and in most laboratories. The student will discover that doing quality work in the laboratory requires a great deal of patience and care.

GRADING

The final grade will be based on the following scheme:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Activities</td>
<td>70% of total</td>
</tr>
<tr>
<td>Midterm + Final Exam</td>
<td>30% of total</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

The lowest lab report score will be deleted. Course grades will be assigned as follows:

- **A**: 90-100%
- **B**: 80-89%
- **C**: 70-79%
- **D**: 60-69%
- **F**: less than 60%

For grades I, W, Cr, NC and N -- See college catalog

MODE OF INSTRUCTION

The primary mode of instruction is through the use of hands-on laboratory activities. Each hands-on activity will be preceded by a class discussion based on a pre-lab online homework consisting of a reading assignment and completion of pre-lab questions and problems. The homework and pre-lab may consist of videos, websites and computer programs.

Conduct of the Lab:

- **First 50 min**
 - Discuss answers to pre-lab assignment problems and questions, review important principles and safety precautions, demonstrate new techniques needed or use of new equipment (in **Imiloa 111**)
- **Remaining time**
 - Perform hands-on activity, record observation and data, calculate results
- **10 min**
 - Clean-up
- **Last 30 minutes**
 - Answer Post-lab questions

The activity report may be turned in at the end of the class, or at the latest at the start of the next meeting. If submitted late, a penalty will be imposed.
COURSE POLICIES AND TIPS TO SUCCEED IN THIS COURSE

1. The *Course Content and Schedule* (activity titles and corresponding dates) is listed on the last page. Changes in the schedule will be announced in class (or course website) at least a week prior to the affected date. You are responsible for obtaining this information whether or not you were present during the announcement.

2. *Before class*. Each hands-on activity is described in detail in the Lab Manual (LM). PLEASE be prepared for the activity by reading the LM thoroughly and studying the Laulima Modules multimedia resources. Do the online *Pre-Lab* homework before coming to class. The online *Pre-lab* closes at 1 pm on the day of the activity.

3. Bring your *Lab Manual, scientific calculator, lecture textbook* and a *stapler* to class at all times.

4. *Safety* is important. Wear your *safety goggles and wear closed-toed shoes* (preferably sports shoes) to protect from danger of spilling chemicals. Slippers, sandals or similar footwear are not allowed. You will NOT be permitted in the lab if you are not wearing close-toed shoes.

5. The *online pre-lab homework* constitutes *10% of the report grade*. Please allot two hours for this activity.

6. Please come to class on time. Attendance will be checked at the start of the PreLab session. The instructor may disallow the student from the lab or deduct 10% of the lab report grade, if absent during the Pre-Lab. *Important background information* about the experiment and *safety* will be discussed in the Pre-Lab discussion. During the Pre-Lab, you are expected to ask questions and take notes.

7. *During lab (Imiloa 131)*. Follow *laboratory rules and procedures* at all times. Treat all chemicals with respect and wipe up any spill, return all reagents to the proper place, replace lids on bottles and report any accident or problem to the instructor. Follow the *directions in the Procedure* precisely. Don’t take short cuts nor fake results as these are readily spotted.

8. In the lab, you are to work in pairs. Work cooperatively and maintain a positive attitude. Treat it as an *opportunity to learn* and do not simply rush through an experiment in order to get out of the laboratory as quickly as possible. Maintain a *positive attitude* and work cooperatively with other students and the laboratory instructor. Be alert and maintain presence of mind.

9. *Inappropriate and disruptive behavior* such as activated beepers and cell phones, making offensive remarks, prolonged chattering, etc. will not be tolerated. *Do not use cell phones* in the classroom or in the laboratory. Please step outside if you need to make a call.

10. When recording a *measurement*, it is expected that the *value* reflect the precision of the instrument used (never round-off) and affix the correct unit. *Record all your data*
neatly in ink and with units. Do not erase original data. If you make a mistake just put a line thru them. Point deductions will be applied to data with incorrect precision.

11. Do a quick calculation to check if results are reasonable before dismantling the setup. Repeat the experiment if you make a mistake. Consult the instructor to discuss the probable causes of error before doing the repeat.

12. Use laboratory time efficiently and bear in mind that the experiment should be done at least ten minutes before the end of class for cleanup activity.

13. When you have finished, put away all your lab glassware and equipment in the proper storage areas. Otherwise, points will be deducted. The same thing goes when safety precautions, chemical transfer, clean-up and waste disposal techniques and procedures are not followed.

14. After the lab. Complete your calculations (round off to the correct number of significant figures) as soon as possible after the laboratory. Turn in your report if you are done by the end of the period. If you wish to continue working on your report after the class period is over, please use the Tutor Room in Imiloa 112. Do not procrastinate and wait until the night before the next laboratory to write your report. Remember you will need to prepare for the new one as well.

15. Laboratory reports. You are expected to turn in an individual report at the beginning of next class. Please answer all the questions and present all data and calculations. Deductions of two to three points for every omission will be implemented.

You are expected to discuss results, calculations and interpretations with your laboratory partner and classmates, but calculations and answers in the report should be completely your own work. Copying someone else’s work or answers is cheating. Students involved in cheating will be assigned a grade of “F” and will be reported.

16. A formal laboratory report is required for Experiments on Rate Law Determination, Chemical Equilibrium and Titration Curves while an informal lab report is required for all the other experiments. Formal reports should follow the standard format. The rubric for grading the formal lab reports and tips on how to write a formal report are found in your Lab Manual. A sample formal lab report is downloadable in Laulima.

17. Late Reports. If submitted one week after the due date, the lab report (only for labs the student was present) will be given a grade of 70% if complete and 65% if less than complete. The grade assigned will be zero if submitted much later.

18. The graded lab report will be returned to you in the following lab session. Keep these reports in a safe place. These will be your primary review materials for the exam. Monitor your class performance by keeping a record of your scores on the table of contents page of the Lab Manual.

19. Make-up. No make-up is allowed and the student gets “zero” for the missed lab activity. You cannot turn in a lab report for a missed activity.
21. If you have any **special learning needs**, including hearing/visual impairment, please inform the instructor as soon as possible.

DISABILITIES ACCOMMODATION

If you have a physical, sensory, health, cognitive, or mental health disability that could limit your ability to fully participate in this class, you are encouraged to contact the Disability Specialist Counselor to discuss reasonable accommodations that will help you succeed in this class. Ann Lemke can be reached at 235-7448, lemke@hawaii.edu, or you may stop by Hale ‘Akoakoa 213 for more information.

COURSE CONTENT AND SCHEDULE

Holidays: Sep 5 (M), Nov 11 (F), Nov 24 (R), Nov 25 (F)
Important Dates: **Last day for withdrawal**, CR/NC Oct 25 (T)
Last day of instruction, Dec 8 (R)

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 24</td>
<td>Laboratory Safety, Equipment & Procedures</td>
<td></td>
</tr>
<tr>
<td>Aug 31</td>
<td>Intermolecular Forces</td>
<td></td>
</tr>
<tr>
<td>Sep 7</td>
<td>Dry Ice and Phase Diagrams</td>
<td></td>
</tr>
<tr>
<td>Sep 14</td>
<td>Separating Mixtures Using Chromatography</td>
<td></td>
</tr>
<tr>
<td>Sep 21</td>
<td>Using Freezing Point Depression to Find Molecular Weight</td>
<td></td>
</tr>
<tr>
<td>Sep 28</td>
<td>Make Your Own Demo</td>
<td>Presentation in Class</td>
</tr>
<tr>
<td>Oct 5</td>
<td>Rate Order Graphing Lab</td>
<td></td>
</tr>
<tr>
<td>Oct 12</td>
<td>Rate Law Determination of the Crystal Violet Reaction</td>
<td>Formal Lab Report</td>
</tr>
<tr>
<td>Oct 19</td>
<td>Midterm Exam (Experiment 1-7)</td>
<td></td>
</tr>
<tr>
<td>Oct 26</td>
<td>The Determination of an Equilibrium Constant</td>
<td></td>
</tr>
<tr>
<td>Nov 2</td>
<td>Chemical Equilibrium and Le Chatelier’s Principle</td>
<td>Formal Lab Report</td>
</tr>
<tr>
<td>Nov 9</td>
<td>Acid Dissociation Constant, Ka</td>
<td></td>
</tr>
<tr>
<td>Nov 16</td>
<td>Buffers</td>
<td></td>
</tr>
<tr>
<td>Nov 23</td>
<td>Titration Curves of Strong and Weak Acids and Bases</td>
<td>Formal Lab Report</td>
</tr>
<tr>
<td>Nov 30</td>
<td>Establishing a Table of Reduction Potentials</td>
<td></td>
</tr>
<tr>
<td>Dec 7</td>
<td>Final Long Exam (Experiment 8-14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& Check-out</td>
<td></td>
</tr>
</tbody>
</table>

Subject to change due to lecture alignment, etc.