UNIVERSITY OF HAWAII COMMUNITY COLLEGES

PROPOSAL TO INITIATE, MODIFY OR DELETE A COURSE

1. TYPE OF ACTION
 A. Addition
 □ Regular □ Experimental □ Other
 B. Deletion
 C. Modification
 □ in credits □ in title □ in number or alpha □ in prerequisites □ Other

2. NEW ALPHA, NUMBER AND TITLE
 Phil. 110

3. CREDITS
 3

4. OLD ALPHA, NUMBER AND TITLE
 Phil. 210

5. CREDITS
 3

6. NEW CATALOG DESCRIPTION

7. PREREQUISITES

8. STUDENT CONTACT HOURS PER WEEK
 Lecture _____ Lecture/Lab _____ Lab _____
 Other (specify) _____

9. PROPOSED DATE OF FIRST OFFERING

10. THIS COURSE
 □ IS REQUIRED □ IS AN ELECTIVE FOR THE WCC PROGRAM/CORE
 □ CAN FULFILL Quantitative Reasoning REQUIREMENT

11. THIS COURSE
 □ INCREASES □ DECREASES □ MAKES NO CHANGE IN NUMBER OF CREDITS REQUIRED FOR THE PROGRAM/CORE

12. SIMILAR COURSES OFFERED ELSEWHERE:
 College(s):
 UH
 LCC
 HCC
 Alpha, Number, Title:
 Phil. 110 – Intro. to Logic

13. THIS COURSE IS
 □ ALREADY ARTICULATED with U. H.
 □ APPROPRIATE FOR ARTICULATION
 □ NOT YET APPROPRIATE FOR ARTICULATION
 (Provide details of existing or desired articulation (date, college(s), purposes, pre-major or major, etc.))
 During Chancellor Mookini’s tenure.

14. REASON FOR INITIATING, MODIFYING OR DELETING COURSE OR OTHER PERTINENT COMMENT:
 Bring course number in conformity with U. H. Manoa
 and Community College System.

REQUESTED BY:

APPROVED BY:

Date: 5 Oct 93

Date: 7 Oct 93

Date: 11/2/93

Date: 11/4/93

Date: 1-14-94

Date: 11/2/93

Date: 11/4/93

Date: 12/8/93

Date: 1-14-94

CCCM #6100
(Amended for WCC use Sept. 1991)
Levels of Review of Course Proposals at WCC

<table>
<thead>
<tr>
<th>Signatures</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Subject Area (one or more instructors in the area)</td>
<td>Oct. 4, '93</td>
</tr>
<tr>
<td>Ron Kim</td>
<td>10-4-93</td>
</tr>
<tr>
<td>J. Tucker</td>
<td>10/5/93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department Chairperson</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-Oct-93</td>
</tr>
</tbody>
</table>

Was this course discussed in a dept. mtg. []

<table>
<thead>
<tr>
<th>Division</th>
<th>Assistant Dean of Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-6-93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curriculum Committee Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Disapproved</td>
</tr>
<tr>
<td>Reason:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curriculum Committee Chairperson</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-9-93</td>
</tr>
</tbody>
</table>
FORMS FOR NEW COURSE PROPOSAL

COURSE MODIFICATION/DELETION/COURSE ARTICULATION

1. To help you in the preparation of your forms for the above curriculum actions, it is recommended that you read CCCM #6100 (November 1, 1988) "Policies and Procedures for Approval of New and Modified Courses." This is available from the Office of the Dean of Instruction or from the CAAC Chairperson.

2. All curriculum actions (new course proposal, course modification, course deletion, course articulation) require the completion of:

A. **COVER FORM** (white)

 UH COMMUNITY COLLEGES PROPOSAL TO INITIATE, MODIFY OR DELETE A COURSE
 (2 sides; page 2 requires signatures only)

B. **NEW COURSE PROPOSALS**

 1. WCC Form for New Course Proposal (pink)
 2. Course Outline
 3. WCC Form for Transfer Courses (blue), if articulation desired.

C. **COURSE MODIFICATIONS**

 1. WCC Form for Course Modification (yellow)
 2. Course Outline (if the content of the course will be changed or, if the course number will be changed and articulation with any 4-year UH campus needs to be maintained).
 3. WCC Form for Transfer Courses (blue), if the course number will be changed and articulation with any 4-year UH campus needs to be maintained.

D. **COURSE DELETIONS** require only the COVER FORM.

E. **COURSE ARTICULATIONS** (with any 4-year UH campus)

 1. WCC Form for Transfer Courses (blue)
 2. Course Outline (if it is not a new course).
GUIDELINES FOR A COURSE OUTLINE

To provide required information and review of new course proposals, course modification, and/or articulation, the following should be included in a course outline:

1. Course description.

2. Hours per week of lecture, lab, and/or other activities and total student contact hours per week.

3. Prerequisites required, corequisites required, recommended preparation and basic skills needed. If the course involves the use of mathematics, indicate the level of quantitative reasoning required.

4. Specific course objectives (what knowledge and/or skills will successful completion of the course develop in the student?).

5. Method of instruction

6. Course content and approximate time to be spent on each topic. (Proposed semester schedule is acceptable).

7. Text(s) to be used and reading level of text (contact Learning Assistance Center to determine reading level). List text(s) to be used (if no text, so state). Indicate approximate percent of text to be used if less than 75%.

8. Reference and supplementary materials that may be found in the Library or elsewhere that will contribute to the course.

9. Course requirements: List any projects, field trips, experiments, reports, independent work, etc., which will be required or expected of students for the course.

10. Evaluation: Identify methods of evaluation which will be employed to determine if the course objectives are being met (e.g., written examinations, attendance, projects). Specify the grading procedure to be used in the course.
WCC FORM FOR TRANSFER COURSES

(To be completed for articulation with any 4-year UH campus)

Course __________________ Submitted by __________________ Date ______

1. List the counterpart to this course on any 4-year UH campus. Describe the relationship between the course and any related baccalaureate program area.

 This course has been articulated with

 [Name of University]

2. Is this course taught or accepted by major accredited colleges or universities? Give one or two examples.

 Yes

 (See page 1, #13)

3. Please attach a complete course outline, if you have not done so already. Your course outline should address all the items listed in the Guidelines for Course Outlines.

 (See Attachment 1)
WCC FORM FOR COURSE MODIFICATIONS

Course: Phil. 210 Submitted by: Ron Loo Date: Oct. 4, 93

1. What change is proposed in the course? Provide specific information comparing both the "new" and "old" course.

Change course number of Phil. 210 to Phil. 110.

2. What is the rationale for the change?

To bring this course in line with the numbering system of U.H. Manoa and the community college system.

3. Is the change substantive enough to require a change in course identification? If so, explain thoroughly.

No. Course content will remain the same.

4. Is the course articulated with any 4-year program? U.H. Manoa.

If yes, give details of the agreement(s) and explain any impact the proposed modifications may have on articulation.

This course was accepted as a core course with U.H. Manoa.

5. Provide details of any additional staff, equipment, facilities, library/media material, faculty preparation and other financial considerations that would be required to implement this course modification. What has been done to provide for these additional costs? Who will teach the course? Is additional preparation needed?

N/A.

6. Will this course modification result in any alterations in the number of hours required to attain a certificate or degree? No.

If yes, provide details and justification for these alterations.

7. If the course is renumbered to 100 or above, does it meet the criteria for transfer level courses? (See attached criteria for transfer courses.) Yes.

WCC 9/91
WOC FORM FOR NEW COURSE PROPOSALS

Course ____________ Submitted by _________________ Date ______

1. How is this course related to the educational needs and goals of the College/Department/Community as reflected in the EDP?

2. Provide details of any additional staff, equipment, facilities, library/media material, faculty preparation and other financial support that would be required to implement this course. (Include an estimate of the actual cost of supplies and equipment.) What has been done to provide for these additional costs for the proposed date of offering? Who will teach the course?

3. Is a similar course taught elsewhere in the UH system? _____
 If yes, provide details of how this course differs from existing similar courses.

4. Is this course experimental and/or unique to Windward Community College? _____
 If yes, provide rationale and details of its impact on the College curriculum.

5. Is a similar course taught on the upper division level by a 4-year UH college? _____
 If yes, explain why this course is appropriate at the lower division or how it differs from its upper division counterpart.

6. Please attach a complete course outline. Your course outline should address all the items listed in the Guidelines for Course Outlines.

7. If this course is numbered 100 or above or appropriate for transfer to a 4-year college, complete and attach WOC Form for Transfer Courses (blue). (See attached criteria for transfer courses.)

WOC 9/91
CRITERIA FOR TRANSFER COURSES

Final decisions as to the academic level of a course should generally rest with the professional judgment of the faculty. Each of the items below indicates an area which should be considered in arriving at this judgment, although not all items pertain to all courses. It is important that judgments not be made by the "least common denominator" approach: the standard to keep in mind is the "typical" college transfer course, rather than the most borderline courses now accepted within the system.

1. **Rate of progress expected of students.**

 High schools and colleges typically differ rather substantially in the quantity of material taught in a semester. The course in question should be compared with high school and college courses in related areas.

2. **Basic skills (reading, writing and analytical) needed for success in the course.**

 The concern here is with the skill levels required of students rather than the level of material in the class. To be successful in most freshman transfer courses, a student must have a minimum of 10th grade skill level in the areas relevant to the course.

3. **Amount and level of reading, writing or other independent work required.**

 As a rule of thumb, much of the reading material for a freshman level course should be at 12th or 13th grade level. Sometimes sophisticated ideas are presented in a simple writing style (such as the writing of Camus). In these cases, the level of the audience for which the materials were developed or who normally read them may be a useful indicator.

 College courses usually differ from high school courses in the amount of reading, writing or other independent work required of students. The long standing rule of thumb for lecture classes is that students should spend two hours studying outside of class for every hour in class. For laboratory classes, a rule of thumb is that the student should spend three hours per week for each credit assigned to the class, with the student working independently or in groups for a substantial portion of the lab.

4. **Amount and level of quantitative and logical reasoning required.**

 Where the course involves use of mathematics, a minimum of one year of high school algebra, or its equivalent, as background for the course would be required for transfer courses. (In the field of mathematics itself, courses through second year algebra are non-transfer.) Courses should also be examined for use of logical principles.
5. **Conceptual level of the course.**

Transfer courses generally stress theory, principles and concepts more than do non-transfer courses. They also move at least somewhat beyond recognition, recall and application to synthesis, analysis and understanding, although a major goal of many introductory transfer courses is mastery of the basic language and concepts of the discipline. Where a course focuses on teaching specific skills, it may be transfer level if it emphasizes the skills as applications of basic underlying principles and devotes considerable attention to understanding of those principles.

6. **Background knowledge in related subject matter expected of students entering the course.**

If a course is based on the expectation that students will have completed normal high school courses in related areas it may be a transfer course (e.g., high school physics as an expected preparation for a technical program). If the course has as a prerequisite another course which is itself transferable, and if the knowledge from the prior course is utilized in the course in question, the course should be transferable.

7. **Level of mastery expected of students.**

When the competencies attained in a course are sufficient to prepare students for further study in a related baccalaureate program, the course may be transferable. The relationship between the subject matter of the course and any related baccalaureate program area should be examined.

8. **Is there a counterpart to this course on any four-year campus in the University system?**

Although generally a course taught on four-year campuses would automatically be numbered 100 or above, it should be examined against other criteria as well. It is possible that some courses offered on four-year campuses should not be there. If such a case arises, we should challenge the appropriateness of that course on the four-year campus rather than blindly following their lead.

9. **Is this course taught at or accepted by major accredited mainland colleges or Universities?**

As in #8, the course should be examined against other criteria as well. Practice elsewhere is not sufficient justification for our numbering decisions. Give one or two examples.
PH 742 Family Planning Programs (3)
Continuation of 741. Pre: consent.

PH 745 Maternal & Child Public Health Nutrition (3)
Analysis of nutritional problems of women and children from a public health perspective. Comparative review and evaluation of domestic and international policies, legislation, and programs. Pre: 647.

PH 744 Seminar on Women & Health (3)
The role of women, health professionals, and women’s health. Current literature and research regarding attitudes, roles, rights, and health care. (Cross-listed as NURS 744 and SW 776)

PH 747 Statistical Techniques in Epidemiological Research (3)
Statistical methods applied to epidemiological studies, emphasis on non-infectious diseases.

PH 748 Applied Multivariate Analysis in Health Sciences (3)
Statistical methods for the analysis of many variables, variance and co-variance, treatment of categorical data. Applications to biomedical data. Pre: 655 or 656, or equivalent.

PH 749 Sampling Techniques in Public Health (3)
Methods appropriate for sample surveys in public health and medical fields. Use of random, stratified, cluster, or systematic sampling illustrated with current surveys of human populations. Pre: 654 or 655.

PH 751 Research Seminar in Medical Geography (3)
Pre: 415, GEOG 415, or consent. (Cross-listed as GEOG 751)

PH 752 Epidemiological Modeling of Diseases (3)
Theoretical model building in disease dynamics and its analytical methods. Pre: 654 or 655, and 663; or consent.

PH 753 Life Table & Survival Analysis (3)
Construction and interpretation of various types of life tables, treatment of censored data, proportional hazards, relative risk regression models, and parametric survival. Pre: 654 or 655.

PH 754 Categorical Data Analysis (3)
Theory and practice of statistical analysis of cross-classified data, especially from public health and social sciences, including logistic models, response models, proportional odds models, and others. Pre: 654 or 655.

PH 755 Seminar in Tropical Medicine & Public Health (1)
Weekly discussion and reports on current advances in tropical medicine and public health. (Cross-listed as TRMD 690)

PH 756 Special Topics in Tropical Medicine (1)
Advanced instruction in frontiers of tropical medicine and public health. Repeatable. (Cross-listed as TRMD 705)

PH 760 Practicum in Health Education & Community Organization (V)

PH 763 Health Promotion & Education (3)
Development of health promotion programs: issues, emerging trends, methods and evaluation. Emphasis on educational perspectives.

PH 764 Health Promotion Research Seminar (3)
Review and analysis of current behavioral and educational social science research relevant to health promotion, risk reduction, and problems of translating research to practice. Pre: 763 or consent.

PH 765 Evaluative & Action Research in Public Health (3)

PH 766 Organizational Development in Health Systems (3)
Organizational and staff development and renewal. Organizational diagnosis, planned change, intervention theory, consultation. Pre: consent.

PH 769 Seminar in Community Health Education (3)
Students prepare scholarly papers presenting personal theories of practice based on literature, coursework, field experience, interaction with faculty and peers. Pre: 791O, master’s degree candidacy, and health education specialization.

PH 770 Environmental Epidemiology (3)
Environmental problems of such as asbestos, lead, noise, and pesticides. Pre: 663, and 654; or consent.

PH 773 Measurement of Environmental Factors (3)
Collection, identification, and/or measurement of environmental hazards. Sampling and analysis of industrial atmosphere for dusts, mists, gases, fumes; interpretation of other physical measurements such as radiation, light, sound, and noise. Pre: 684 (or concurrent or) consent.

PH 774 Water Quality Management (3)
Major environmental factors affecting water quality including urban, industrial, and agricultural activities. Engineering aspects of analysis in relationship to control and management for water quality improvement. Pre: consent. (Cross-listed as CE 631)

PH 777 Research Design in Public Health (2)
Principles of research applicable to inquiry; problem definition, data gathering and appropriate analytic methods. Pre: consent.

PH 780 Preventive Medicine Seminar (1)
Designed to develop and sharpen problem solving skills in the area of health promotion and disease prevention for residents and potential residents in the preventive medicine residency program.

PH 788 Seminar in Public Health Sciences (V)
Topics related to recent development in major areas: student and faculty research activities. Repeatable. (1) biostatistics; (2) environmental health; (3) biostatistics; (4) public health nutrition. Pre: consent.

PH 789 Seminar in Community Health Development (V)
Graduate seminar for students in department of community health development. Repeatable. (1) gerontology; (2) health planning; (3) health services administration; (4) maternal and child health; (5) mental health; (6) health education. Pre: consent.

PH 790 Seminar in International Health (V)
Current issues in cross-cultural (international) health and population/family planning studies. Pre: consent.

PH 791 (Alpha) Advanced Public Health Practice (3)
Observation, study, and practical work in student’s area of emphasis. (B) biostatistics; (C) health planning; (D) environmental health; (E) epidemiology; (G) gerontology; (H) health services administration; (I) international health; (J) maternal and child health; (M) population and family planning; (O) public health education; (R) public health nutrition; (S) community health development; (T) public health science. Pre: public health degree candidate and consent.

PH 792 (Alpha) Current Issues & Topics in Public Health (V)
Current and emerging issues and topics related to public health. (B) biostatistics; (C) health planning; (D) environmental health; (E) epidemiology; (G) gerontology; (H) health services administration; (I) international health; (J) maternal and child health; (M) population and family planning; (O) public health education; (R) public health nutrition; (S) community health development; (T) public health science. Repeatable. Pre: consent.

PH 795 Doctoral Seminar in Public Health (V)
Development of critical review of problems and issues related to doctoral study in public health. Repeatable. Pre: enrollment as DrPH student.

PH 797 (Alpha) Exploration in Public Health (V)
Investigation of emergent fields of inquiry in public health. (B) biostatistics; (C) health planning; (D) environmental health; (E) epidemiology; (G) gerontology; (H) international health; (I) maternal and child health; (M) population and family planning; (O) public health education; (R) public health nutrition; (S) community health development; (T) public health science. Repeatable. Pre: consent.

PH 800 Dissertation Research (V) Pre: consent.

Pharmacology
See PHRM (p. 388)

Philosophy
College of Arts and Humanities (p. 142)

One of the following is generally a prerequisite to each advanced course: 100, 101, 102, 110, 200, or 201. For courses numbered 600 or above, unless otherwise specified, prerequisite is graduate standing or consent.

PHIL 100 Introduction to Philosophy: Survey of Problems (3)
Great philosophical issues, theories, and controversies. AH4

PHIL 101 Introduction to Philosophy: Morals & Society (3)
Social and individual values, obligations, rights, responsibilities. AH4

PHIL 102 Introduction to Philosophy: Asian Traditions (3)
Universal themes and problems, from Asian perspective. AH4

PHIL 103 Introduction to Philosophy: Environmental Philosophy (3)
A critical examination of environmental issues analyzing the nature of the human being, the nature of nature, and the relationship of the human being to nature. AH4

PHIL 110 Introduction to Logic (3)
Principles of modern deductive logic. M/L

PHIL 120 Science, Technology & Values (3)
Interrelationship between facts, decisions, and human values set within the context of some contemporary problems posed by science and engineering. AH4

For key to symbols and abbreviations, see p. 287.
Recall major factors which affect drug action.

Become familiar with standards and legislation as they relate to drugs and their administration.

Use appropriate references for obtaining drug information.

Administration of Medications (1)

Hours lecture/lab per week
Prerequisites: BIOL 22, 130, or ZOOL 141
Prerequisites: PHARM 103, 104
Recommended Preparation: HLTH 150 and 110
Application of basic concepts required for medication administration: choice of equipment, proper technique, hazards and complications, patient care, satisfactory performance of intramuscular, subcutaneous, and intradermal injections; preparation and administration of oral medication, immunizations.

Upon successful completion of this course, the student should be able to:

- Apply the basic concepts required for medication administration.
- Solve conversion problems within and among the following systems: household, metric, and apothecary.
- Interpret abbreviations and symbols accurately as they relate to drug administration.
- Solve drug calculation problems.
- Apply the specific rules of safe drug administration.
- Correctly administer oral, eye, ear, nose, and parenteral drugs in simulated lab situations.

General Pharmacology (3)

Hours lecture per week
Prerequisites: ZOOL 141, 141L, ZOOL 142, 142L or equivalent; Chemistry is recommended

General Pharmacology 203 is a general pharmacology course that includes discussion of the major categories of drugs, their mechanism of action, toxicity, administration considerations, and uses. This course is intended for nursing student and students in the other health occupations.

Introduction to Philosophy (3) PHIL

Introduction to Philosophy (3) AH4

Hours lecture per week
Recommended preparation: Qualification for MATH 27.
Recommended preparation: Completion of or qualification for ENG 100 or 160.
Development of basic problem-solving skills and an understanding of the principles and concepts involved in clear thinking. Emphasized will be the concepts of truth and validity, deductive reasoning, fallacious modes of argument and the criteria of adequate evidence in science and ordinary life.

Upon successful completion of this course the student should be able to:

- Demonstrate knowledge of informal fallacies by identifying typical instances in everyday life.
- Translate logical problems into symbolic notation.
- Show ability to recognize the basic valid forms of argument.
- Employ formal rules of logic in deductive analysis.
- Construct truth-tables for argument forms.
- Understand the use of Venn Diagrams.

History of Philosophy I (3) PHIL 200

History of Philosophy II (3) PHIL 201

3 hours lecture per week
PHIL 200 covers Western philosophy from the era of Greek thinkers to the Renaissance.
PHIL 201 covers Western philosophy from the Renaissance to the present.

Upon successful completion of PHIL 200 or 201, the student should be able to:

- Recognize the major world views of ancient and medieval/modern and contemporary Western philosophy.
COURSE DESCRIPTIONS—PHIL

201 Science of the Sea (3)
This course offers a descriptive and non-mathematical survey of geological, physical, chemical and biological oceanography, providing the student with a broad understanding of the sea floor and its features; chemical properties of sea water and its motions; life in the sea and its interaction with the environment. (3 hrs. lect.)

230 Ocean Resources and Ecology (3)
Prerequisite: OCEAN 201
Ocean 230 deals with the application and extension of oceanographic principles to problems of marine ecology, resource management and environmental conservation. This course will examine a variety of potentially available ocean resources such as food, energy, minerals, oil and natural gas. Methods of extraction of these resources and their impact on marine environment will be analyzed. (3 hrs. lect.)

Also see Zoology for Marine Biology

PHILOSOPHY (PHIL)

50 Introduction to Reasoning (3)
Learning to avoid black and white thinking with special emphasis on persuasive appeals and scientific conclusions popularized by the mass media. (3 hrs. lect.)

100 Introduction to Philosophy: Survey of Problems (3)
Great philosophical issues, theories, and controversies. (3 hrs. lect.)

101 Introduction to Philosophy: Morals and Society (3)
Social and individual values, obligations, rights, and responsibilities. (3 hrs. lect.)

102 Introduction to Philosophy: Asian Tradition (3)
Universal themes and problems, from Asian perspective. (3 hrs. lect.)

110 Introduction to Logic (3) (formerly PHIL 210)
Development of basic techniques of analysis and an understanding of the principles and concepts involved in clear thinking. Emphasized will be logical validity, deductive and inductive reasoning, fallacious arguments, symbolic logic, and scientific method as applied to criteria of reasonable evidence. (3 hrs. lect.)

120 Science, Technology, and Values (3)
Prerequisite: ENG 100
An introductory course addressing the relationship between science, technology, and human values with a focus on contemporary problems posed by developments in modern science. (3 hrs. lect.)

200 History of Philosophy (To 1600) (3)
Western Philosophy from the Greeks to the Renaissance. (3 hrs. lect.)

201 History of Philosophy (From 1600) (3)
Western Philosophy from Renaissance to present. (3 hrs. lect.)

255 Cosmology: Science and the Human Prospect (3)
Prerequisites: ENG 100 or instructor approval
An interdisciplinary study of science and philosophy from a humanistic perspective. A scientific description of the Universe and its constituents and its implications for human life will be discussed. Also, the central philosophical problems of cosmology will be discussed: the problem of understanding the world—including ourselves, and our knowledge, as part of the world. (3 hrs. lect.)
101 INTRODUCTION TO PHILOSOPHY: Morals and Society, (3).
An introductory study of moral values, nature of end or goals, the voluntary, virtues and vices, natural law, happiness, nature of morality.

102 INTRODUCTION TO PHILOSOPHY: Asian Traditions, (3).
Methods and fields in philosophy from the historical and/or positional perspective of basic Hindu, Buddhist, Taoist, Confucian and Zen Buddhist philosophers.

110 INTRODUCTION TO LOGIC, (3).
An examination of the principles involved in clear thinking through the use of traditional and/or symbolic techniques. Definitions, truth and validity, and modes of argumentation will be some of the material emphasized. Helps fulfill requirements in either the Division of Arts and Humanities or the Division of Mathematics and Natural Sciences but may not be counted twice under both divisions for the same degree.

140 PROBLEM SOLVING, (3).
Theory of problem-solving techniques with application to diverse real-world situations. Quantitative techniques to be derived from areas of probability theory, decision and game theory, statistics, as well as logic. Human values in problem solving will be considered. Discussion of computer applications. Crosslisted as ICS 140.

200 HISTORY OF PHILOSOPHY I, (3).
A study of Western philosophy from the era of great Greek philosophers to the Renaissance. Offered only during Fall semester.

201 HISTORY OF PHILOSOPHY II, (3).
A study of Western philosophy from the Renaissance to the present. Offered only during Spring semester.

250 ETHICS IN HEALTH CARE, (3).
Health care ethics is an application of general moral principles to special ethical issues relating to health care: professional responsibility, confidentiality, euthanasia, human experimentation, etc. Recommended preparation: PHIL 110, ENG 100, Nelson-Denny score of 56 or higher.

PHYSICS (PHYS)

100B SURVEY OF PHYSICS (Lecture/Lab), (4).
An introduction to the science of physics through topics selected from mechanics, thermodynamics, electricity and magnetism, relativity, atomic and/or nuclear physics. Emphasis will be placed on understanding basic principles and concepts. Simple algebra will be used. This course is a terminal physics course for non-science majors. A pocket calculator is required. Prerequisite: two years of high school algebra or MATH 27, or equivalent.

114 INTRODUCTION TO PHYSICAL ELECTRONICS, (3).
A basic course in electronics designed for the layman. No prior experience in physics or electronics is needed and no math beyond basic algebra is involved. This course surveys the role of electronic devices in the home and introduces the basic concepts involved in the operation of common electric circuits. Students are provided with practical experiences in circuit assembly and applications. A pocket calculator is required. Prerequisite: two years of high school algebra or MATH 27, or equivalent.

151 COLLEGE PHYSICS I, (3).
The first course in a two-semester sequence in introductory physics intended for science majors. Emphasis is split between concepts and mathematical applications. Algebra, trigonometry and geometry are used; calculus is not. The course includes mechanics, kinetic theory and thermodynamics. Required: Pocket trig-type calculator. Prerequisite: credit or concurrent registration in MATH 140. Offered Fall Semester only.

151L COLLEGE PHYSICS LABORATORY, (1).
An experimental analysis (laboratory) course paralleling PHYS 151 in content and mathematical level, intended for science majors. Class meets once a week for 3-hour sessions. Prerequisite: credit or concurrent registration in PHYS 151. Offered Fall Semester only.

152 COLLEGE PHYSICS II, (3).
The second course in a two-semester sequence in introductory physics intended for science majors. Emphasis is split between concepts and mathematical applications. Algebra, trigonometry and geometry are used; calculus is not. Course includes electricity and magnetism, wave motion, optics, and atomic and nuclear physics. Required: Pocket trig-type calculator. Prerequisite: PHYS 151. Offered Spring Semester only.

152L COLLEGE PHYSICS LABORATORY II, (1).
An experimental analysis (laboratory) course paralleling PHYS 152 in content and mathematical level, intended for science majors. Class meets once a week for 3-hour sessions. Prerequisite: credit or concurrent registration in PHYS 152. Offered Spring Semester only.

170 GENERAL PHYSICS I, (4).
A rigorous introductory course in classical mechanics and thermodynamics for physical science and engineering
COURSE NAME: Introduction to Logic

COURSE NUMBER: Philosophy 210

CREDIT HOURS: Three (3) hours.

CATALOGUE DESCRIPTION: A study of the foundations and development of rational thought and communication and their applications. Includes analysis of deductive reasoning, formal and informal fallacies, and the use of symbolic systems.

REQUIREMENTS COURSE SATISFIES:

AT WINDWARD COMMUNITY COLLEGE: Meets AA degree Quantitative Reasoning requirement.

AT UNIVERSITY OF HAWAII: Meets BA degree Quantitative Reasoning requirement.

RECOMMENDED BASIC SKILLS LEVELS:

READING: College level.

WRITING: College level.

ACTIVITIES REQUIRED AT OTHER THAN REGULARLY SCHEDULED CLASS TIMES:

FIELD TRIPS: Optional. Optional

INSTRUCTOR: Ron Loo

OFFICE: Waipā 112

OFFICE PHONE: 235-7456

EFFECTIVE DATE: Fall 1993
OUTLINE OF COURSE OBJECTIVES

A. GOALS OF THE COURSE
Upon completion of this course, you should . . .

1. Be able to distinguish between good and bad arguments and correct and incorrect reasoning.

2. Have acquired insights into principles of reasoning and be familiar with fallacies in order to avoid them.

3. Have an understanding of the assumptions, concepts, forms and applications of logic.

4. Have an understanding of the foundations and applications of and the differences between deductive and inductive thinking.

B. OBJECTIVES OF THE COURSE
The student will demonstrate ability to identify and apply basic concepts and principles of logic (by completing either TASK I or TASK II, and TASK III):

 TASK I: On in-class, objective quizzes without references, be able to recognize and label fallacies, language functions, agreements and disagreements in belief and attitude, construct truth tables, construct formal proofs of validity (justify steps in proofs) and prove invalidity. Lowest quiz score will be dropped. Minimum level of achievement: average of 57-67% accuracy.

 TASK II: Complete assigned homework covering chapters 1-3, 8, and 9 (testing the same skills as those tested in the quizzes.) Lowest score will be dropped. Minimum level of achievement: average of 57-67% accuracy.

 TASK III: Complete three (3) in-class exams (closed book.) Minimum level of achievement: average of 57-67% accuracy.

C. MODE OF INSTRUCTION
Because of the character of the subject matter, class attendance is stressed. Classes will be conducted on a lecture basis with sessions consisting of exegesis and problem solving.
OUTLINE OF COURSE OBJECTIVES

D. METHOD OF GRADING

1. Weight of tasks:
 - Homework or quizzes - 33 1/3%
 - Three (3) exams - 66 2/3%

2. Course grades will be assigned as follows:
 - A: average of 90-100% accuracy.
 - B: average of 79-89% accuracy.
 - C: average of 68-78% accuracy.
 - D: average of 57-67% accuracy.
 - F: failure to meet course objectives at minimum levels of achievement.
 - W: formal withdrawal from the course.

E. TEXTBOOK AND OTHER ASSIGNED INSTRUCTIONAL MATERIALS

Required: Copi, I.M. and Carl Cohen; Introduction to Logic
 MacMillan (8th ed.)

 Loo, R; The Work Sheet (2nd ed.)

F. OTHER INFORMATION

1. Office hours:
 - To be announced in class.

2. Class attendance:
 - Regular attendance is expected of all students.

3. Class preparation:
 - Students are expected to prepare adequately for each class session. "Keeping up" will insure a satisfactory result for you.

4. Learning assistance:
 - Because of the nature of the subject matter, students are advised to seek learning assistance from the instructors as they begin to encounter difficulty with homework assignments, etc.
UNIT 1: What Is Logic?
Premises and Conclusions
Recognizing Arguments
Types of Arguments

What Is A Fallacy?
Fallacies of Relevance
Fallacies of Ambiguity
EXAM #1: ______

UNIT 2: Symbolic Logic
Special Symbols
Conjunction, Negation, Disjunction
Material Implication
Material Equivalence
Statement Forms
Argument Forms
EXAM #2: ______

UNIT 3: The Method of Deduction
Formal Proof of Validity
The Rule of Replacement
Proof of Invalidity
EXAM #3: ______